低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的具体值尚未确定。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的具体值尚未确定。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的具体值尚未确定。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取相关知识才能有效缓解。现行美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆盖层压力)提供了详细的风荷载设计。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,烟囱和水箱的现行指导方针将扩大到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。使用更高的阵风影响系数很容易证明是合理的,因为典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响系数。然而,由于缺乏对屋顶设备的研究或风洞研究,阵风影响系数的任何具体值尚未确定。
低矮建筑物上的风荷载被认为是一种危险,需要不断获取知识才能有效缓解。当前的美国标准 ASCE 7-98 为整个结构系统以及屋顶和墙壁等结构部件(包括局部覆层压力)提供了详细的风设计荷载。另一方面,屋顶附属物上的风荷载并未得到具体解决。但是,ASCE 7 风荷载任务委员会正在考虑在下一版标准 ASCE 7-00 中规定空调机组等附属物的设计荷载。如果该提议被接受,当前的烟囱和水箱指南将扩展到包括屋顶设备,并建议采用更高的阵风影响系数(> 0.85),例如 1.1 或更高。由于典型的屋顶设备尺寸相对较小,往往会导致较高的面积平均峰值压力,因此使用较高的阵风影响因子是合理的。此外,设备可能位于屋顶边缘附近的加速流区,因此需要更高的阵风影响因子。但是,由于缺乏对屋顶设备的研究或风洞研究,尚未确定任何特定的阵风影响因子值。
极限风荷载可以接受地小。从经济或保险的角度来看,这个概率概念很重要。如果疏散或类似措施不能防止人员伤亡,那么从安全的角度来看,它也很重要。但是,
ITS 伸缩格构钢塔结构是全自动的,延伸高度范围为 +38’0” (12m) 至 +130’0” (40m) 高于地面 (AGL),标准有效载荷能力为 550lbs (250kg) 和 650lbs (295kg),具体取决于型号配置,并提供任何同类塔系统的最大风荷载能力。虽然所有 ITS 伸缩结构都可以在其最大延伸高度单独用于自支撑配置 ~ 不需要拉线,最高可达有效载荷、风荷载和风速的组合;与所有此类塔一样,在无人值守的场地长期部署时,通常始终建议使用拉线组件 ITS 结构是定制制造的,可直接安装到混凝土基础上,或集成到众多 ITS 拖车、卡车、滑橇或其他类似平台上。可利用由业界认可的独立结构工程和咨询公司执行和认证的严格有限元分析程序进行应力分析审查,以确定塔构件设计是否符合 ANSI/TIA-EIA 222-G 标准要求,适用于每个客户特定的负载配置。格构塔构件的建模采用梁单元作为支柱构件,桁架单元作为支撑,缆索单元作为升降和支撑缆索。构件的结构参数和几何形状包含在塔建模中。计算不同风向的风荷载,然后将其作为外部荷载施加在结构上,内部确定自重荷载。为了获得所有塔构件和拉线(如果使用)中发生的最大应力,需要考虑相对于塔和可选拉线的三个不同风向(迎风、顶风、平行风)。
摘要:屋顶压力统计数据是 ASCE 风荷载设计条款的基础,通常通过边界层 (BL) 风洞测试获得。然而,人们已经认识到一个长期存在的问题——不同 BL 风洞报告的结果不一致。请注意,这些 BL 风洞测试往往遵循标准设置,使用既定的仪器和设备测量缩小的建筑模型上的流量和压力,并使用通用方法处理数据。导致报告的压力统计数据存在不可忽略的差异的主要因素是什么?考虑到风洞数据在作为 CFD 工具验证的参考案例方面的作用越来越大,必须严格评估现有的风洞压力数据,并深入了解风工程界的这一突出问题。这项工作将重点关注 NIST 和 TPU 气动数据库中存档的模拟 BL 流入的孤立低层建筑模型的选定案例的屋顶压力数据的时间序列。结果包括瞬时压力、平均和 RMS 表面压力的直方图,以及由 Gumbel 模型根据屋顶上的压力抽头位置和风向估计的峰值压力。我们希望找出风洞测试中导致结果差异的主要因素,并帮助解决这一问题。关键词:风洞测试、数据不一致、NIST 气动数据库、TPU 气动数据库 1.简介 风洞测试创建了一个受控的、理想的、模拟的边界层流动条件,并使用缩放的建筑模型来重现感兴趣的风结构相互作用。对于风荷载试验,主要测量量包括局部表面压力和/或总力和力矩,以及模型所受的流入特性(风速剖面、湍流水平和频谱)。边界层风洞试验极大地促进了风荷载设计。然而,风洞试验结果的不一致性一直是风工程界公认的长期问题。例如,对来自六个著名风洞实验室的风压数据的变异性进行了比较,得出结果的变异系数在 10% 到 40% 之间(Fritz 等人,2008 年)。风洞结果的差异可以归因于风荷载测量和估计的多个方面。风洞可能受到实现 ABL 风的全光谱的能力限制(由于物理尺寸和缺少粗糙度细节而切断大尺度和小尺度的湍流结构)、相对较低的 Re 数范围以及与特定设备相关的不确定性。就低层建筑模型而言,高度与边界层气动粗糙度(H/z 0 Jensen 数)的比率在实用上非常具有挑战性。建筑特征和表面纹理难以建模,这可能会极大地影响表面的关键流动分离、重新附着和涡流发展
摘要。本文介绍了 COTUR(使用激光雷达测量湍流相干性)活动期间的测量策略和收集的数据集。该现场试验于 2019 年 2 月至 2020 年 4 月在挪威西南海岸进行。相干性量化了涡流的空间相关性,在海洋大气边界层中鲜为人知。这项研究的动机是需要更好地表征横向相干性,横向相干性部分决定了多兆瓦海上风力涡轮机的动态风荷载。在 COTUR 活动期间,使用陆基遥感技术研究了相干性。仪器设置包括三个远程扫描多普勒风激光雷达、一个多普勒风激光雷达剖面仪和一个被动微波辐射计。 WindScanner 软件和 LidarPlanner 软件同时用于将三个扫描头定位到由激光雷达风廓线仪提供的平均风向。辐射计仪器通过提供大气边界层中的温度和湿度廓线来补充这些测量。扫描光束略微向上指向以记录表面层内和表面层上方的湍流特性,从而进一步了解表面层缩放在模拟海上风力涡轮机湍流风荷载方面的适用性。初步结果显示横向相干性随扫描距离的变化有限。横向相干性的略微增加
还在没有风荷载和基准激励的情况下研究了舷梯在运行周期(升降、回转和伸缩)中的振动,随后用于确定 Ampelmann 系统的疲劳寿命。在舷梯伸缩运动过程中,观察到当 T 型臂架分别缩回和伸展时,振动周期减小和增加。根据应力寿命法进行疲劳寿命分析,并使用雨流循环计数法获得应力循环次数。结果表明,Ampelmann 舷梯可承受高达 10 6 次运行循环。然而,需要强调的是,在运行过程中,外部载荷始终存在。因此,舷梯的疲劳寿命将低于预期的运行循环次数。