该系列应答器包括最高可达 3 级的 S 模式,可实现基本和增强监视 (EHS) 所需的所有功能。它通过传输下行链路飞机参数 (DAP) 提供唯一的飞机标识、增强的 C 模式高度分辨率和飞行细节。
S 模式 CONOPS 2.0 版代表了 1995 年 6 月由作战需求和数据处理小组 (ODT) 成立的 S 模式增强监视作战使用 (MOUSES) 工作队的成果。MOUSES 工作队负责进一步开发核心区域 S 模式的作战概念,以达到实现增强监视所需的水平。这项任务是 S 模式增强监视初步实施监视域战略 (IIMSES) 的重要组成部分,其中包括在拟议的地面系统监视功能设计中提取和向地面传输下行链路飞机参数 (DAP)。因此,与 S 模式转发器的承载和操作相关的 DAP 的定义和使用将 IIMSES 与基本监视以及可能由 S 模式子网和航空电信网络 (ATN) 的未来发展产生的监视区分开来。
飞行模拟器有不同的用途。由于硬件限制,全尺寸飞行模拟器通常非常昂贵,并且通常取决于飞机类型。因此,人们发现并研究了使用虚拟现实设计飞行模拟器的需求 [1-2]。训练飞行员最安全、最经济的方式是通过飞行模拟器。模拟器可以帮助飞行员体验各种涉及真实飞行的情况,而无需身临其境,从而避免风险。飞行模拟器的重要部分是所谓的控制负载系统。飞行装置实例的数量用于管理飞机的运动、飞行控制和驾驶舱仪表。该系统包括硬件和软件部分。通过数字计算机上的程序员进行的模拟属于软件,结构研究属于硬件。另外两个软件模块支持模拟,其中一个控制驾驶舱在 6 个自由度上的运动,另一个实现驾驶舱控制上的负载再现系统 [3]。飞行模拟器是人在回路的实时模拟系统,采用控制加载系统模拟飞行员操纵真实飞机时的力感应。全数字控制电控加载系统比液压系统具有技术和成本优势,成为大型模拟器的理想选择 [4]。在过去的几十年里,飞行模拟器在飞行员训练中发挥了重要作用,提高了飞行安全性。目前,飞行模拟器的监管资格标准涉及在规定的容差范围内匹配一组规定的飞行测试数据和各种飞机参数。尽管全面的资格测试指南 (QTG) 验证测试表明模拟与飞行测试数据相匹配,但飞行员有时会抱怨模拟器中的某些机动感觉不像飞机 [5]。
本文提供了有关起落架结构健康监测 (SHM) 系统开发的信息,该系统通过直接负载测量以及支柱维修检测算法提供预测/诊断 HUMS 功能。该系统通过将新传感器集成到起落架组件中来提供先进的监测技术。直接负载测量方法是当前跟踪机身起落架系统和机身支撑结构疲劳损伤方法的范式转变,这些方法依赖于 SHM 设备以各种采样率在机上记录的飞机参数数据收集。起落架 SHM 提供直接负载测量、重量/平衡计算以及对起落架组件执行基于条件的维护 (CBM) 的能力。NAVAIR 与 ES3 签订合同,通过小型企业创新研究 (SBIR) 计划(通过 N121-043 主题的第二阶段奖励)支持起落架 SHM 的开发。提议的解决方案将直接转移到其他海军、军用和商用飞机平台。本文将讨论 HUMS 和 CBM 领域的以下主题:(1) 用于直接负载测量的先进起落架传感器;(2) 将直接负载监测数据融合到疲劳寿命评估中;(3) 利用支柱维修检测算法实现飞机维护的范式转变;(4) 系统验证和确认;(5) 安全和维护效益。频谱开发和使用监测领域的先前工作通常侧重于飞机结构,将假设转化为起落架组件,而无需任何直接测量。使用监测的好处也可以用于起落架。直接载荷测量能够延长使用寿命、根据实际载荷移除部件、提高安全性、增加飞机可用性,并将 CBM 数据纳入维护实践,从而节省维护成本。本文通过对在高技术就绪水平 (TRL) 下适用于严酷起落架环境的传感器进行小型化,推动了最新技术的发展。