考虑一下所需步骤可能会节省数小时的安装时间和故障排除时间。成功安装的步骤 1.检查 GEM 的 STC 批准型号列表,了解飞机型号是否合格。2.检查发动机温度限制 (CHT/TIT),如发动机型号合格证、飞机型号合格证或飞行手册中所述。GEM 通常提供 460 度 (CHT) 和 1650 度 (TIT) 华氏度红线,但其他红线也可用。具有其他红线的 GEM 仪器在仪器零件号后用括号中的后缀表示。例如。P/N 610C-001 - 表示正常红线 P/N 610C-001(X) - 表示其他红线 请咨询 Insight 了解可用的温度限制。3.选择要安装的新型 G 系列 GEM 型号。高性能飞机可从 G3 或 G4 型号的高级功能中受益匪浅。G1 型号专为配备低马力发动机的小型飞机而设计,不建议用于复杂或高性能飞机 a) 单引擎飞机可以安装 G1、G2、G3 或 G4 型号中的任何一个。b) 双引擎飞机通常在仪表板空间充足的情况下安装一对 G3 或 G4-001 型号,否则可以安装 G4-002(双)仪表。4. 审查所选 GEM 型号的功能和要求,以确保与现有和计划中的飞机设备兼容。5.确定安装是否是从旧版 GEM 系统升级或首次安装 GEM。如果是升级,请参阅“升级安装”部分。6.GEM 安装套件包含安装所需的大部分物品,除了“所需工具和材料”部分中列出的材料。安装人员必须提供“所需工具和材料”部分中列出的所有材料。
2-1.本章的目的。本章提供了 DFDRS 型号认证的信息。申请人必须获得 FAA 批准才能安装或改装 DFDR 及其组件。申请人可以申请型号认证 (TC)、修订的 TC、STC 或其他形式的批准。申请人必须证明其符合飞机型号认证基础中包含的适用法规。附录 4 列出了根据飞机认证基础适用的典型认证要求。TC 中引用的型号认证数据表 (TCDS) 通常会标识适用的法规。申请人必须按照批准飞机认证办公室 (ACO) 或飞行标准地区办公室 (FSDO) 的指示证明其符合适当的认证要求。(见附录 3。)
MQ-9B 的设计初衷是让其能够在不受隔离的国内和国际空域自由飞行。该飞机符合北约标准 (STANAG 4671),并符合世界各地的民用空域要求。通过使用 GA-ASI 首创的探测和规避系统以及可认证的地面控制站,MQ-9B 可以与任何商用或其他军用飞机无缝集成到民用空域。MQ-9B 的远程飞行控制站为操作员提供了与载人飞机驾驶舱类似(甚至更好的)的空中交通画面。多年来,GA-ASI 一直与美国联邦航空管理局和英国民航局密切合作,以获得他们批准 MQ-9B 在民用空域运行。如今,英国皇家空军正在引领 MQ-9B 的发展,并将成为第一支采用其飞机型号——Protector RG Mk1 的部队。
飞行控制系统日益复杂和自动化,对联邦飞机认证和飞行员培训政策构成了挑战。尽管过去二十年来商业航空安全取得了显著改善,但飞行控制自动化和飞机复杂性被认为是造成多起重大航空事故的因素,包括 2018 年和 2019 年两起涉及新推出的波音 737 Max 变体的海外坠机事故。这些坠机事件引起了人们对联邦航空管理局 (FAA) 对运输类飞机型号认证和飞行员培训实践监督的关注,特别是因为它们涉及复杂的自动飞行控制系统。随着飞机系统在过去三十年中不断发展以纳入新技术,国会已授权 FAA 简化认证流程,主要动机是促进开发新的增强安全性技术。
具有跨机队配置。这意味着可以在一个通用文档中为由多种飞机型号和制造商组成的机队执行 ELA 更新。该电子表格的设计尽可能直观和不言自明,目的是让 SAS 的所有部门都能使用它。航空电子部门能够轻松访问特定飞机的修改历史记录,并且可以将注册任务分配给从事修改工作的整个工程师组。这样一来,航空电子部门的工作量就大大减轻了,从而有更多的时间执行其他重要任务。由于缺少先前修改的文档,可能会发生电气过载,而由于此类事件而停飞的飞机会造成巨大的损失。电气过载也是航空公司的主要安全隐患。ELUS 是一种可以帮助 SAS 避免未来发生此类情况的工具。
(B) 如果 C-PED 是飞行机组舱中使用的电子飞行包,并且如果 (A) 中所述的 DO-160 测试发现干扰余量不足或尚未执行,则有必要在将要运行的每种飞机型号上测试 C-PED。应在飞机上对 C-PED 进行运行测试,以表明不会对飞机设备产生干扰。此测试应在真实飞机上进行,并且可以给予与测试飞机相同品牌和型号的其他类似装备的飞机(特别是它们具有相同的航空电子设备)信用。可以使用 EASA“产品、部件和设备适航性的一般可接受合规方法”AMC-20、AMC 20-25(“电子飞行包的适航性和操作考虑因素”)中描述的替代合规方法。
实现新飞机的预期轮胎寿命一直很困难,特别是对于战斗机而言。某些飞机型号的初始飞机轮胎寿命低于预期,这导致项目产生了意想不到的成本。轮胎寿命问题是性能要求不断提高、重量要求不断变化以及对轮胎磨损力学缺乏了解的直接结果。为了解决这个问题,第 96 测试组、航空航天生存能力和安全作战基地 (96TG/OL-AC) 与空军研究实验室 (AFRL) DOD 超级计算资源中心正在合作开发用于轮胎磨损设计、测试和评估的高级计算建模功能 [1] 。正如在以前的飞机采购计划中所观察到的那样,在采购周期的早期显著延长轮胎寿命可以使项目的后勤、环境和财务方面受益。延长某些飞机的轮胎寿命可以在飞机的整个生命周期内节省数亿美元。
实现新飞机的预期轮胎寿命一直很困难,特别是对于战斗机而言。某些飞机型号的初始飞机轮胎寿命低于预期,这导致项目产生了意想不到的成本。轮胎寿命问题是性能要求不断提高、重量要求不断变化以及对轮胎磨损力学缺乏了解的直接结果。为了解决这个问题,第 96 测试组、航空航天生存能力和安全作战基地 (96TG/OL-AC) 与空军研究实验室 (AFRL) DOD 超级计算资源中心正在合作开发用于轮胎磨损设计、测试和评估的高级计算建模功能 [1] 。正如在以前的飞机采购计划中所观察到的那样,在采购周期的早期显著延长轮胎寿命可以使项目的后勤、环境和财务方面受益。延长某些飞机的轮胎寿命可以在飞机的整个生命周期内节省数亿美元。