理学硕士 ETH 马丁·格伯 所属:瑞士天空实验室基金会 研究领域 机载研究、可持续航空 研究描述 瑞士天空实验室基金会支持瑞士研究飞行平台的科学、技术和学术利用,以促进教育、专业培训和发展。 SkyLab 为研究人员提供机会,在杜本多夫机场进行反复的抛物线飞行活动,进行失重实验。此外,SkyLab 还参与了各种使用飞行平台作为研究基础设施的研究项目。其中包括开发省油的进近程序和在客机上传输实时天气数据的方法。 平台和相关服务、可共享设备/基础设施/数据库 访问各种机载研究平台 特殊专长 组织飞行测试活动 多学科航空航天研究项目的项目管理
8 DV8R 无人微重力飞行平台 ........................................................ 28 9 DV8R 安装在 LSWT 内的 HARS 上 ........................................................ 30 10 DV8R 的翼尖涡流 ............................................................................. 31 11 查找水平浮力 𝜆 3 的图表 ............................................................................. 33 12 查找边界校正因子的图表 ............................................................................. 34 13 查找 𝜏 2 的图表 ............................................................................................. 35
8 DV8R 无人微重力飞行平台......................................................... 28 9 DV8R 安装在 LSWT 内的 HARS 上............................................. 30 10来自 DV8R 的翼尖涡流 ................................................................................ 31 11 用于查找水平浮力 𝜆 3 的图表 ........................................................................ 33 12 用于查找边界校正系数的图表 ........................................................................ 34 13 用于查找 𝜏 2 的图表 ........................................................................................ 35
8 DV8R 无人微重力飞行平台 ...................................................... 28 9 安装在 LSWT 内部的 HARS 上的 DV8R .............................................................. 30 10 来自 DV8R 的翼尖涡流 ............................................................................. 31 11 用于查找水平浮力的 𝜆 3 的图表 ............................................................. 33 12 用于查找边界校正因子的图表 ............................................................. 34 13 用于查找 𝜏 2 的图表 ............................................................................. 35
由于现代传感器系统的技术改进,飞机、卫星和无人机 (UAV) 等高空飞行平台上生成的数据量不断增加。由此产生的对机载和空间平台更高数据速率的需求推动了过去几年飞机和卫星激光通信终端的发展。德国航空航天中心通信与导航研究所在开发自由空间光学 (FSO) 终端方面有着成功的记录,这些终端可用于飞行平台,如平流层气球、飞机和小型卫星,以便实时将数据从移动平台传输到地面。除了 FSO 的高数据速率和针对射频 (RF) 干扰的安全传输通道等优势外,直接视线也是成功链接的必要条件。传统的 RF 通信更加稳健,受大气干扰或天气条件的影响较小。因此,新的系统概念已经开发出来,以受益于 FSO 提供的高数据速率和 RF 通信技术的可靠性。作为这一趋势的一部分,DLR 已经开发并展示了一种能够克服大气杂散效应的混合 FSO/RF 通信系统。本文概述了 DLR 目前的研究和发展,目标是结合 FSO 和 RF 通信的优势。它讨论了不同平台上可能的实施概念,并介绍了实施的 FSO/RF 混合通信系统在 1Gbps 的机载光学下行链路中的实验结果。关键词:自由空间光学、激光通信、混合链路、高数据速率
摘要:空中操纵将飞行平台的多功能性和速度与移动操作的功能能力相结合,由于需要精确的定位和控制,这引起了挑战。在传统上,研究人员依靠卸下感知系统,这些系统涉及昂贵且不切实际的室内环境。在这项工作中,我们引入了一个新颖的平台,用于自主空中操纵,该平台可易于利用板载感知系统。我们的平台可以在各种室内和室外环境中进行空中操纵,而无需依赖外部感知系统。我们的实验结果表明了平台在不同环境中自主掌握各种对象的能力。这一进步可以通过消除昂贵的跟踪解决方案的需求来显着提高空中操纵应用的可扩展性和实用性。为了加速未来的研究,我们开源3我们的ROS 2软件堆栈和自定义硬件设计,使我们的贡献可用于更广泛的研究社区。
近来,无人机 (UAV) 作为一个快速发展的领域,吸引了越来越多的科学家和消费者的关注。人们对多旋翼无人机尤其感兴趣,它们因其低速飞行、悬停和垂直起降能力而被认为是用于高质量航空摄影、摄像、监控和其他地形探索的良好飞行平台。所述特性使它们易于在空间有限的条件下使用。显然,这种飞行器的行为是不稳定的,因此需要负责稳定和导航功能的飞行控制系统 (FCS)。此外,FCS 能够提供完全自主飞行的能力。当代电子技术的快速发展使得制造低成本和紧凑型 FCS 成为可能。然而,实施的测量单元的精度不高。多传感器数据融合是提高精度的方法之一。本文介绍了 FCS 开发中需要指导的要求和一般概念,以及飞行测试中获得的结果及其比较。特别关注多传感器数据融合方法,该方法可以提高飞行精度和可靠性。此外,还提供了硬件和软件架构的描述。
本文介绍了一种 35% 大小的大型无人特技飞行平台 UIUC Aero Testbed 的开发,该平台主要用于在全飞行状态下进行空气动力学研究。该巨型飞机翼展 105 英寸(2.7 米),重量 37 磅(17 千克),由市售的无线电控制模型飞机制成,并进行了大量修改和升级,包括一个 12 千瓦的电动机系统,可提供超过 2 比 1 的推重比。它配备了一个航空电子设备套件,其中包含一个高频、高分辨率六自由度 (6-DOF) 惯性测量单元 (IMU),可让系统收集飞机状态数据。该信息集可用于生成高保真空气动力学数据,可用于验证大迎角飞行动力学模型。该项目的合作还使 Aero Testbed 具备了全自主和半自主飞行的能力,以便开展自主飞行研究。首先介绍了用于研究的特技无人机的文献综述。然后讨论了开发该平台的背景和动机。接下来是对所涉及的规划和开发的描述。最后,介绍了初步试飞结果,其中包括几次特技动作的飞行路径轨迹图。
摘要 — 本文报告了从快速机载平台到地面站的高速率自由空间光通信下行链路的演示。所用的飞行平台是 Panavia Tornado,激光通信终端安装在附加的航空电子演示吊舱中。配备自由空间接收器前端的可移动光学地面站用作接收站。选择的通信下行链路波长和信标激光的上行链路波长与 C 波段 DWDM 网格兼容。开发了新的光机跟踪系统,并将其应用于两侧,以实现链路捕获和稳定。飞行测试于 2013 年 11 月底在德国曼奇的空中客车防务与航天公司附近进行。该活动成功展示了数据速率为 1.25 Gbit/s 的飞机下行链路激光通信的成熟度和准备就绪性。我们根据链路预算评估、开发的光机终端技术和飞行活动的结果概述了实验设计。试验本身侧重于机载终端和地面站的跟踪性能。可在飞机速度高达 0.7 马赫时测量性能,并传输来自机载摄像机的视频数据。在瞬时跟踪误差分别低于 60 μ rad 和 40 μ rad 时,机载终端和地面站的跟踪精度高达 20 μ rad rms。
遥感飞行平台分为卫星遥感和航空遥感,过去的航空遥感平台主要是有人机。20世纪90年代,随着电子技术的飞速发展,小型无人机在遥控、续航时间、飞行品质等方面有了明显的突破,成为近来兴起的新型遥感手段,并在遥感界被普遍认为具有良好的发展前景。与人机相比,无人机的优势主要表现在:一是机动性极高,所有设备加起来也就100多公斤,在机动速度、机动范围、机动条件等方面,是任何飞机都无法比拟的;二是环境适应能力强,不需要专门的起降场地,飞到哪里对气象条件的要求很低,优越的低空性能使得云中作业变得轻而易举,从而大大提高工作效率;三是经济性极佳,飞机购买价格便宜,一般公司都能负担得起,使用成本低,而且不需要有人值守,用户的安全压力大大减轻。从飞行器的性能上看,无人机与人机的一个重要区别在于,无人机在视距内飞行,完全由自动驾驶仪按预设程序飞行,无法根据实际飞行情况进行无人干预,体积小,可装载空间和重量十分有限,只能装载小型普通传感器。第三,无人机飞行时受气流扰动而引起飞行状态偏差,主要靠飞机自身的飞行稳定性来恢复,因此存在明显的速度慢。以上特点直接影响航拍质量,用无人机航拍时,往往出现图像质量不高、重叠误差大、漏拍等现象。