第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。第 3 章的主题是无线电发射机和接收机。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并且描述和解释了锁相环和数字合成器的基本原理。
摘要:2020 年 9 月,美国联邦能源管理委员会 (FERC) 发布了第 2222 号命令,向小容量分布式能源 (DER) 开放批发市场,承认它们通过提供大容量电网服务在提高运营效率方面的潜力。因此,需要一种能够连接输电和配电 (T&D) 模拟并评估 DER 提供大容量电网服务影响的联合仿真能力。在本文中,我们提出了一个新型集成 T&D 联合仿真平台,该平台结合了 T&D 系统模拟器、DER 聚合器/组策略和联合仿真协调器。采用行业标准通信协议来模拟真实情况。选择二次频率调节作为代表性大容量电网服务,并模拟 DER 对频率调节信号的响应。美国科罗拉多州太阳能丰富的配电馈线的模拟结果展示了如何使用 T&D 联合仿真设置来评估 DER 的贡献以最大限度地减少大容量电网频率偏差。
iMeter 6 是 CET 最新推出的产品,用于对公用事业、数据中心、高科技制造设施和重工业的进线和关键馈线进行先进的电能质量监控。iMeter 6 采用行业标准 DIN 外形尺寸,尺寸为 96x96x119.5 毫米,其紧凑尺寸非常适合当今空间受限的环境。iMeter 6 采用金属外壳的优质结构,具有先进的电能质量和收入精确测量、高分辨率波形记录功能、具有 1GB 内存的全面数据记录、广泛的 I/O 和用户友好的 IPS 彩色点阵显示屏 @ 320x240。它还提供用于中性电流测量的 I4 输入或用于测量外部传感器信号(如残余电流或漏电流)的 0/4-20mA 模拟输入。 iMeter 6 配备标准 100BaseT 以太网端口和支持 Modbus TCP/RTU 的 RS-485 端口,成为智能电能质量监测系统的重要组成部分。
第 2 章介绍了天线。本章解释了各向同性和定向辐射元件的原理,并介绍了许多重要概念,包括辐射电阻、天线阻抗、辐射功率、增益和效率。介绍了几种实用的天线形式,包括偶极子、八木波束天线、四分之一波(马可尼)天线、角反射器、波姆和抛物面天线。第 2 章还介绍了馈线(包括同轴电缆和明线类型)、连接器和驻波比 (SWR)。本章最后简要介绍了波导系统。无线电发射机和接收机是第 3 章的主题。本章向读者介绍了 AM 和 FM 发射机以及调谐射频 (TRF) 和超音速外差 (superhet) 接收机的工作原理。选择性、镜像信道抑制和自动增益控制 (AGC) 是现代无线电接收机的重要要求,在继续描述更复杂的接收设备之前,将介绍这些主题。现代飞机无线电设备越来越多地基于数字频率合成的使用,并描述和解释了锁相环和数字合成器的基本原理。
摘要 — 本文研究了网络系统的实时优化问题,并开发了在线算法,无需明确了解系统模型即可引导系统朝着最佳轨迹运行。该问题被建模为具有时变性能目标和工程约束的动态优化问题。算法的设计利用了在线零阶原始对偶投影梯度法。具体而言,涉及目标函数梯度的原始步骤(因此需要网络系统模型)被其零阶近似所取代,并使用确定性扰动信号进行两个函数评估。评估是使用系统输出的测量值进行的,从而产生反馈互连,其中优化算法充当反馈控制器。本文对这种互连的稳定性和跟踪特性提供了一些见解。最后,本文将该方法应用于电力系统中的实时最优潮流问题,并展示了其在 IEEE 37 节点配电测试馈线上进行参考功率跟踪和电压调节的有效性。
摘要 - 本文引入了一种分布式的应急检测算法,用于使用随机混合系统(SHS)模型在功率分配系统中检测不可观察的意外情况。我们旨在应对分销网络中有限测量能力的挑战,这些挑战限制了迅速检测意外事件的能力。我们将分布网络连接,负载馈线,PV和电池储能系统(BESS)混合资源的动力学结合到完全相关的SHS模型中,该模型代表分布系统作为意外情况下不同结构之间的随机切换系统。我们表明,SHS模型中的跳跃对应于物理功率网格中的突发事件。我们基于幅度调制输入(MAMI)采用探测方法,以使意外情况可检测到。通过对样本分布系统的模拟来验证所提出的方法的有效性。索引术语 - PV-BESS,分布系统,不可检测的偶性,随机混合系统,偶然性检测。
摘要 - 如今,可再生分布生成(RDG)集成到分销网络中是有希望的,并且正在增加。但是,分布式发电(DG)的高渗透水平通常受到限制,因为它们可能会对分销网络的运行产生不利影响。操作挑战之一是DG和电压控制设备之间的相互作用,例如。 g。,一个负载的Tap Changer(ULTC),基本上旨在补偿由缓慢的负载变化引起的电压变化。可变DGS的集成会导致快速电压波动,从而对ULTC的TAP操作产生负面影响。本文通过模拟研究了RDG高渗透率对ULTC在分销网络中的TAP操作的影响。也可以进行各种缓解这种影响的缓解技术。在这些技术中,恒定的功率因子模式被认为是最小化TAP操作数量的简单性和有效性之间的最佳权衡。使用Opendss软件在加拿大的农村分布馈线上进行模拟。
在此气候变化弹性计划(“ CCRP”或此“计划”)之前,我们已经采取了故意的步骤来准备并适应极端天气事件的频率和严重性的增加。这些步骤包括安装新的传输线和配电馈线,提升和保护变电站设备,以及更换和升级传输和分配结构以满足更新的标准。1个PSEG长岛还猛烈袭击了超过1,400英里的主线分布,以承受更高的持续风,包括在极端系统事件中发生的风。此外,PSEG长岛扩大了其植被管理计划,以包括更健壮的修剪,并采用了针对性的悬垂肢体去除和热点习惯2,以降低高风速事件中碎屑干扰的风险。这些努力在建立弹性方面起着重要作用。PSEG长岛和LIPA继续预料并为电动系统做好与气候变化相关的未来影响。
摘要:几种技术,计算和经济障碍已导致减少基于可再生能源的发电量,尤其是在渗透率较高的系统中。考虑到减少能量的空间和时间分布,移动电池能量存储(MBE)可以应付此问题。因此,提出了一种新的操作模型,以最佳的使用风和光伏(PV)资源的分配网络中的MBE。由于公交电压,馈线超负荷和电力过量,网络经历了减少情况。MBES是一个压实在容器中的卡车安装电池系统。提出的模型旨在确定MBE的最佳时空和功率 - 能量状态,以达到最小的缩减比率。该模型考虑了MBE的运输时间和成本,同时建模了主动和反应性功率交换。该模型是线性的,没有收敛性和最佳问题,适用于现实生活中的大型网络,并且可以轻松地集成到商业分销管理软件中。在测试系统上的实现结果证明了其功能,可以在所有削减模式和场景下恢复风能和PV资源的相当大的能量份额。
摘要:本研究提出了电池储能系统 (BESS) 的优化选址和定型方法,以提高 Nakhon Phanom 变电站第七条馈线的性能,该变电站是泰国与光伏 (PV) 相连的配电网。所考虑的目标函数旨在通过最小化配电网一天内产生的成本来提高配电网性能,包括电压调节成本、无功功率损耗成本和峰值需求成本。采用粒子群优化 (PSO) 解决优化问题。研究发现,BESS 装置的最佳选址和定型可以提高配电网在成本最小化、电压分布、无功功率损耗和峰值需求方面的性能。从三种情况下调查了结果,其中案例 1 没有 PV 和 BESS 安装,案例 2 仅具有 PV 安装,案例 3 具有 PV 和 BESS 安装。比较结果表明,与案例 1 和 2 相比,案例 3 提供了最佳成本、电压偏差、无功功率损耗和峰值需求;案例1、2和3提供的系统成本分别为4598美元、5418美元和1467美元。