为追求轻量化,机身采用硬壳式结构设计,主翼采用半硬壳式结构。机翼前缘和后缘采用由多条肋条和纵梁组成的骨架结构,机翼表面采用贴有太阳能电池的树脂薄膜。为方便运输,机身可分为两部分,主翼可分为三部分,各连接部分采用插拔式保持结构,既保持了刚度又减轻了重量。从尾翼、发动机舱、起落架等主要部件到机载设备支架等小部件,最大限度地利用了复合材料,实现了轻量化。因此,复合材料结构总重量仅为设计的35公斤。太阳能飞机成功获取了各种数据,并证实了为通信卫星和高空飞机建立通信环境的可能性。主要优势
沸石是一种具有三维晶体结构的微孔铝硅酸盐矿物,其具有规则排列的大型开放空腔,形成笼状和通道。空腔由沸石的结构组成1,2)组成。它们的骨架由(SiO 4 ) 4-和(AlO 4 ) 5-四面体组成,两者都可以构建由单环4-、6-和8-,或双环4-4、6-6和8-8或支环4-1、5-1等组成的二级结构单元3)。骨架结构类型将决定表面积、孔径和孔隙率4)。与其他矿物相比,沸石具有多种优势,尤其是其作为离子交换剂、催化剂和吸附剂的功能。印度尼西亚四面环海,火山环纵横交错,具有丰富的天然沸石矿物资源 5, 6) 。沸石可用作催化剂、离子交换和吸附剂 6) 。一般而言,沸石矿物具有以下化学式 7) :
有机电化学晶体管(OECTS)代表了一个新兴的设备平台,用于下一代生物电子学,这是由于对生物信号的独特增强和敏感性。用于实现无缝的组织 - 电源界面,以获得准确的信号获取,皮肤样柔软性和可伸缩性是必不可少的要求,但尚未将其赋予高性能OECT,这在很大程度上由于缺乏可拉伸的可拉伸性氧化还原活性半导体聚合物。Here, a stretchable semiconductor is reported for OECT devices, namely poly(2-(3,3 ′ -bis(2-(2-(2-methoxyethoxy) ethoxy)ethoxy)-[2,2 ′ -bithiophen]-5)yl thiophene) (p(g2T-T)), which gives exceptional stretchability over 200% strain and 5000 repeated stretching cycles, together with OECT的性能与最先进的表现。通过系统的特征和不同聚体的比较验证,该聚合物的关键设计特征是使高可伸缩性和高OECT性能结合的非线性骨架结构,中等的侧链密度和足够高的分子量。使用这种高度可拉伸的聚合物半导体,具有高归一化的跨导率(≈223s cm-1)和双轴可拉伸性高达100%应变,以高归一化的跨导率(≈223s cm-1)制造。此外,还展示了皮肤心电图(ECG)记录,它结合了内置放大和前所未有的皮肤的可比性。
固定创造性流是传统雕塑创作形式的特征之一,这是不可互换的。在第一步中,雕塑骨骼是雕塑的核心形式,应根据雕塑的整体形状空间来构建骨架的大小和动态电位。它的构造是雕塑创作序列中的主要链接。建造骨骼的材料主要是木材和金属材料,过程缓慢而繁琐。尤其是,大型雕塑作品的骨骼的建造不亚于建筑物的框架。如果后生产过程中存在问题,则必须在及时甚至重新制作中进行调整,因此骨骼的构造是雕塑创作中最重要的第一步。第二步,掌握模制物体的势能和整体形状是骨架结构后进行的一部分,它要求创建者在一定时间段内显示在形状成型过程中符合创建标准的对象,并塑造,并塑造并雕刻其详细信息;第三步,在将雕塑图像模制在核心骨架上之后,应将其翻转并通过转弯技术进行模制,最后转换为硬材料雕塑。在传统的雕塑生产过程中,每个过程都起着至关重要的作用,并且生产序列是固定和不可逆转的。如果逆转生产过程,则最终工作将不会以最初的创建意图显示。
蛙壶菌 ( Bd ) 是壶菌病的病原体,正在毁灭世界各地的两栖动物种群。Bd 属于壶菌谱系,这是一类早期分化的真菌,被广泛用于研究真菌进化。与所有壶菌一样,Bd 会从运动形态发展为固着生长形态,这一转变会导致其细胞骨架结构发生剧烈变化。由于缺乏用于检验有关潜在分子机制的假设的遗传工具,研究 Bd 细胞生物学、发育和致病性的努力受到限制。在此,我们报告了一种 Bd 瞬时遗传转化系统的开发。我们使用电穿孔将外源 DNA 递送到 Bd 细胞中,并在异源和天然启动子下检测到长达三代的转基因表达。我们还调整了转化方案以使用抗生素抗性标记进行选择。最后,我们使用该系统表达荧光蛋白融合,并作为概念验证,表达了肌动蛋白细胞骨架的遗传编码探针。利用活细胞成像,我们可视化了 Bd 生命周期每个阶段以及关键发育转变期间聚合肌动蛋白的分布和动态。该转化系统可以直接测试有关 Bd 发病机制的关键假设。该技术还为解答壶菌细胞、发育和进化生物学的基本问题铺平了道路。
摘要:多硫化物中间体 (Li2Sn,2<n≤8) 的穿梭和锂金属表面的枝晶生长阻碍了锂硫 (Li-S) 电池的实际应用。隔膜功能化提供了一种解决这些问题的直接方法。在此,我们展示了一种用于先进 Li-S 电池的多功能 MIL-125(Ti) 改性聚丙烯/聚乙烯隔膜。MIL-125(Ti) 是一种含钛的金属有机骨架 (MOF),具有开放骨架结构、高固有微孔率和路易斯酸特性。与原始隔膜相比,具有 MIL-125(Ti) 涂层的隔膜表现出更好的电解质润湿性和更低的电阻。独特的涂层层充当有效的物理和化学屏障区域,可捕获多硫化物物质,而不会影响 Li+的平稳传输。同时,MOF 中直径约为 1.5 纳米的高度有序微孔引导均匀的 Li + 镀层,从而抑制锂枝晶。因此,MOF 改性隔膜可显著提高 Li-S 电池的循环稳定性和倍率性能。在 0.2 C(1 C = 1675 mA g-1)下 200 次循环后的容量保持率超过 60%,在 2 C 下比容量为 612 mAh g-1。这种简便的方法为高性能 Li-S 电池提供了一条有效的途径。关键词:锂硫电池、金属有机框架、隔膜、穿梭效应、锂枝晶■ 介绍
图 1 EMT 过程中的细胞事件。正常情况下,上皮细胞以单细胞层或多层形式存在,并通过特殊的细胞间连接相互通讯,包括桥粒、亚顶端紧密连接、黏附连接和分散的间隙连接。一旦上皮细胞受损,上皮细胞 - 细胞连接就会溶解,上皮细胞失去顶端 - 基底极性并获得前后极性。此外,细胞骨架结构会重组,E-钙粘蛋白的表达被 N-钙粘蛋白的表达取代,这有助于细胞运动和侵袭性。然后,基底膜会溶解。在胚胎发生过程中,上皮和间充质细胞通过 EMT 和 MET 相互转化,这种转化被称为 I 型 EMT,对胚胎发育和器官形成至关重要。在 II 型 EMT 中,间充质样细胞随后转化为肌成纤维细胞,产生过量胶原蛋白,导致纤维化。在 III 型 EMT 中,间充质样细胞随循环系统迁移到次要位置,迁移细胞通过 MET 形成继发性肿瘤。绿色方格表示三种 EMT 类型中的共同过程,可以针对该过程治疗纤维化和肿瘤。EMT,上皮间充质转化;MET,间充质上皮转化 [彩色图可在 wileyonlinelibrary.com 上查看]
儿科扩张性心肌病(DCM)是一种罕见但危及生命的心血管疾病,其特征是收缩功能障碍,双脑室扩张和心肌收缩降低。治疗选择受到限制,近40%的儿童在诊断后的2年内接受心脏移植或死亡。儿科患者。患者年龄,疾病病因和心脏功能的参数显着影响预后。小儿DCM治疗的目的是改善症状,减少疾病进展并防止威胁生命的心律不齐。许多在成年人中具有已知效率的治疗剂在儿童中缺乏相同的证据。与成人DCM不同,小儿DCM的发病机理并不能很好地理解为大约三分之二的病例被分类为特发性疾病。儿童经历了独特的基因表达变化和响应DCM的分子途径激活。研究表明,小儿DCM中有显着的遗传成分,与肉皮和细胞骨架结构相关的基因中的变异涉及涉及的基因。在这方面,小儿DCM可以视为遗传性心肌病综合征的小儿表现。却令人兴奋的婴儿DCM研究表明,该子集具有独特的病因,涉及出生后心脏成熟的缺陷,例如心肌细胞中编程的中心体崩溃的失败。提高对发病机理的知识对于开发儿童特异性治疗方法至关重要。本综述旨在讨论小儿DCM,当前临床准则和有前途的治疗途径的既定生物学发病机理,从而突出了与成人疾病的差异。总体目标是揭示围绕这种情况的复杂性,以促进新型治疗干预措施的发展,并改善受DCM影响的儿科患者的预后和整体生活质量。
摘要:MASP-1 和 MASP-2 是补体凝集素途径的关键激活蛋白酶。第一种特异性甘露糖结合凝集素相关丝氨酸蛋白酶 (MASP) 抑制剂已通过噬菌体展示从 14 个氨基酸向日葵胰蛋白酶抑制剂 (SFTI) 肽开发出来,产生了基于 SFTI 的 MASP 抑制剂 SFMI。在这里,我们展示了我们分析的 MASP-1/SFMI1 复合物的晶体结构,并将其与其他现有的 MASP-1/2 结构进行了比较。刚性骨架结构长期以来一直被认为是蛋白酶肽抑制剂的结构先决条件。我们发现围绕 P2 Thr 残基组织的疏水簇对于野生型 SFTI 的结构稳定性至关重要。我们还发现,相同的 P2 Thr 可阻止刚性 SFTI 样肽与两种 MASP 的底物结合裂隙结合,因为裂隙被大型守门酶环部分阻断。定向进化通过将 P2 Thr 替换为 Ser 消除了这一障碍,为 SFMI 提供了高度的结构可塑性,这对 MASP 抑制至关重要。为了更深入地了解基于 SFMI 的 MASP-2 抑制的结构标准,我们系统地修改了 MASP-2 特异性 SFMI2,方法是封端其两个末端并用不同长度的硫醚接头替换其二硫键。通过这样做,我们还旨在生成一种多功能支架,该支架可抵抗还原环境并在含有外肽酶的生物环境中具有更高的稳定性。我们发现,抗还原的二硫键取代的 L-2,3-二氨基丙酸 (Dap) 变体具有接近天然的效力。由于 MASP-2 与 COVID-19 患者危及生命的血栓形成有关,我们的合成、选择性 MASP-2 抑制剂可能成为相关的冠状病毒候选药物。■ 简介
神经退行性疾病是全球残疾的主要原因,帕金森氏病(PD)是增长最快的神经系统疾病。在2019年,全球估计表明,有超过850万人患有PD的人。与衰老紧密相连,预计到2040年将翻一番,对整个公共卫生系统和社会造成了很大的压力(https://www.who.int/news-news-roos-rooo m/fact-seets/fact-sheets/fact-sheets/delets/parkinson-disease)。迄今为止,没有血液检查,脑扫描或其他测定方法可以用作PD的确定诊断测试,目前的诊断方法主要依赖于运动症状和神经影像学的专家临床评估[1]。不幸的是,到诊断时,该疾病已经发展到一个相对先进的阶段,在本质中,大约60%的多巴胺能神经元在不可逆地丢失。在此阶段,延迟疾病进展可能为时已晚。因此,迫切需要在早期阶段检测PD的正交分子诊断方法。pd在病理上以蛋白质聚集体在受影响的神经元中的积累,主要由α-突触核蛋白(αS)组成[2,3]。αS的低聚物,而不是神经淀粉样蛋白包含物,被认为是毒性获得的实际致病罪魁祸首,改变了细胞骨架结构,膜通透性,膜流入,钙涌入,活性氧,活性氧,突触触发和神经元兴奋性[4,5]。这导致了与可溶性单体αs不良的交叉反应,这在CSF中的确更为丰富[4,14,15]。有证据表明,与非PD对照相比,PD患者的脑脊液(CSF)中αS低聚物的升高升高,表明它们在该生物FLUID中的水平可以用作PD的生物标志物,为诊断提供了机会[6-8]。然而,我们缺乏对αs低聚物结构的知识,以及它们的短暂性,异位和动态性质,使他们的跟踪和定量成为一项具有挑战性的任务。αs的抗体的产生和使用已成为首选选项,作为诊断和治疗目的的特定元素,例如抑制蛋白质聚集[9]。因此,在早期研究中,CSF中的αS聚集体和其他生物学流体(如血浆或血清)的检测依赖于诸如ELISA [10-12]或CLIA [13]等免疫测定的检测,其抗体通常针对αs s s s s s s s s s s s s s s s s s s s s。因此,这种方法显示出很大的可变性和有限的可靠性[16]。还采用了一些其他已建立的技术来检测有毒的低聚物,例如免疫组织化学,接近连接测定,基于Luminex的测定法,这也需要抗体[17,18]。同样,最近的策略同样依赖于将可用的抗体纳入具有不同感应构型(光学,电化学等)的不同生物传感器原型中。所有这些最终都可能遭受与使用这些受体相同的缺点。基于DNA的适体[19]最近为αs的低聚形式产生了另一种生物受体[20],尽管它们也显示出对Aβ1-40低聚物的识别。超敏感蛋白扩增测定法的最新进展,例如蛋白质不满意的环状扩增(PMCA)和实时Qua King诱导的转化率(RT-QUIC),该转化率(RT-QUIC)最初是针对人类疾病疾病的诊断,已显示出可吸引蛋白质聚集的有希望的结果,该蛋白质与患者的识别和分流相关[7] [7] [7] [7] [7]。但是,它们在常规DI不可知论中的临床实施中也表现出重大局限性。首先,不可能知道哪种是在反应中放大的特定αS物种,因此,分子生物标志物在