本期杂志的封面图片非常漂亮,由 200 名参与 2015 年粒子物理摄影漫步的摄影师之一拍摄,邀请读者了解 CAST 的未来发展,以及 XENON 如何准备成为最灵敏的直接暗物质搜索实验。同时,我们将带您走进 ATLAS 和 CMS 实验的未来,这些实验已经在努力为 LHC 的高亮度阶段 (HL-LHC) 做好准备。回到现在,我们报道了 LHC 在配置为铅离子对撞机时打破的最新记录,以及一篇关于在 PS 成功测试的创新提取系统的文章。最后但并非最不重要的是,关于强子疗法的专题证实了粒子如何有效地帮助我们对抗癌症。要订阅新期刊提醒,请访问:http://cerncourier.com/cws/sign-up。
DJI 智能遥控器企业版(以下简称“智能遥控器”)采用 OCUSYNC TM Enterprise 技术,可控制支持该技术的飞行器,并提供飞行器摄像头的实时高清视图。它可在最远 15 公里的距离内传输图像数据,并配备多个飞行器和云台控件以及一些可自定义的按钮。内置 5.5 英寸高亮度 1000 cd/m² 屏幕,分辨率为 1920×1080 像素,采用 Android 系统,具有蓝牙和 GNSS 等多种功能。除了支持 Wi-Fi 连接外,它还兼容其他移动设备,使用更加灵活。HDMI 端口可用于高清图像和视频输出。传输系统支持 2.4 GHz 和 5.8 GHz,以确保在易受信号干扰的环境中实现更可靠的连接。AES-256 加密可确保您的数据传输安全,因此您可以确保关键信息的安全。*
随着量子信息系统迅速扩大规模并应用于许多领域,高速率、高亮度和高纯度的量子光子源越来越受到青睐。利用芯片上的周期性极化铌酸锂微谐振器,我们分别仅使用 3.4 µ W 和 13.4 µ W 泵浦功率就实现了 8.5 MHz 和 36.3 MHz 高速率的光子对生成,这标志着比最先进的技术有了数量级的提高。在这些高速率下,测得的巧合与偶然比远高于 100,在较低的泵浦功率下达到 14,682 ± 4427。同一芯片能够以数十兆赫兹的速率生成单光子,每个光子的自相关性 g (2) H (0) = 0.008 和 0.097(对于微瓦泵浦)。这种独特的性能得益于芯片设备的无噪声和巨大的光学非线性,这将有助于即将到来的量子光信息技术的广泛应用。
产品描述SQ9910是PWM高效LED驱动器控制IC。它允许从85V AC到265V AC的电压来源的高亮度(HB)LED有效运行。SQ9910以高达300kHz的固定开关频率控制外部MOSFET。可以使用单个电阻对频率进行编程。LED字符串以恒定电流而不是恒定电压驱动,从而提供恒定的光输出和增强的可靠性。输出电流可以在几毫安之间进行编程,最高超过1.0a。SQ9910使用坚固的高压连接隔离过程,该过程可以承受最高500V的输入电压振荡。可以通过在SQ9910的线性调光控制输入下应用外部控制电压来编程到LED字符串到零和最大值之间的任何值。SQ9910提供了低频PWM DIMMing输入,该输入可以接受占空比为0-100%的外部控制信号,频率高达几千期应用程序电路
AF224-0002 降低 CSWAP 多维成像激光雷达的新型架构 AF224-0003 具有 C 至低 K 波段覆盖范围的 20 MW 微波源组 AF224-0004 X 波段射频线性加速器 AF224-0005 高亮度中红外激光照明器 AF224-0006 用于节水的高功率微波应用 AF224-0007 主题已删除 AF224-0008 用于特种作战的数字多感官增强现实 (DMARS) SF224-0009 用于空间天线的新型计量解决方案 SF224-0010 用于空间天线的在轨组装和制造 AF224-0011 支持软件定义网络 (SDN) 的卫星带宽按需分配 SF224-0012 客户功能虚拟化卫星终端 AF224-0013 用于氧气生产的高级陶瓷电化学电池 SF224-0014 能量收集 AF224-0015 用于超可靠低延迟全球导航卫星系统 (GNSS) 信号的前向纠错码
层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
加利福尼亚州桑尼维尔,2024 年 5 月 15 日,Luminus Devices 自豪地推出了一系列突破性的 4 合 1 RGBL(红-绿-蓝-黄绿色)LED,专为需要高输出混色和高显色指数 (CRI) 的舞台和建筑照明系统而设计。4 合 1 RGBL LED 各个发射器之间的间距最小,可提供无与伦比的混色能力,为照明设计师提供广泛的调色板来创造迷人的视觉效果。黄绿色(570 nm 主波长)通道取代了传统 4 合 1 LED 中使用的冷白色 LED,以扩大色彩空间并提高亮度。这些 LED 在最大电流下拥有一流的流明输出,同时保持超过 85 的高 CRI,确保在 3000K 至 8000K 的整个色温范围内提供明亮的照明。所有通道均可驱动高达 3A 和 100% DC,从而实现高流明输出且可靠性不打折扣。
关键电离分数的概念对于高谐波生成至关重要,因为它决定了最大的驱动激光强度,同时保留了谐波的相位匹配。在这项工作中,我们揭示了第二个非绝热的临界电离馏分,这基本上扩展了相匹配的谐波能量,这是由于气体等离子体中强激光场的强烈重塑而产生的。我们通过针对广泛的激光条件进行实验和理论之间的系统比较来验证这种情况。尤其是,高谐波光谱与激光强度的性质经历了三种独特的场景:(i)与单原子截止的巧合,(ii)强光谱延伸和(iii)光谱能量饱和。我们提出了一个分析模型,该模型可以预测光谱扩展,并揭示了非绝热效应对中红外激光器的重要性。这些发现对于在光谱和成像中应用的高亮度软X射线源的开发很重要。
近年来,全世界见证了纳米技术领域的重要进展,纳米技术领域对科学和工业的各个领域产生了强烈的影响,在电子,1医药,2和能量存储方面创造了新的应用。3在这个意义上,文献中已经产生并报告了几种具有不同组成的纳米级材料。纳米材料可以根据其组成进行分类。例如,二氧化硅(SIO 2),4个量子点(QD),5个碳圆点(CD),6和纳米颗粒(金属和非金属金属),其中7种,已被广泛合成并在几个区域中进行了合成和应用。在纳米医学中,更具体地说,文献表明纳米级材料显示出许多优势,包括分解和/或治疗人类疾病。8在理论上,由于独特的光学特性,相对稳定性,高亮度,高量子产率,生物相容性和生物降解性,9一些纳米材料可以用作有前途的工具来帮助生成生物图像,2诊断,10,10和人类疾病的处理(图1)。11