来源:https://www.aeroreport.de/en/artikel/ werkstoffentwicklung-fuer-die-luftfahrt 航空部件应用示例
纳米层压膜是由不同材料交替层组成的复合膜 [1]。这些多层纳米结构因能够调整其机械或物理性质以用于各种特定应用而备受关注。例如,在微电子领域,人们考虑将其用作介电绝缘体 [2,3]。事实上,人们现正致力于制备具有高介电常数和良好化学/热稳定性的多组分体系。特别是 Al 2 O 3 -HfO 2 纳米层压膜似乎是最有前途的体系,可用于硅基微电子器件 [4-9] 以及下一代电力电子器件 [10-15]。能够充分利用 Al 2 O 3 和 HfO 2 单一材料的最合适性质,促使人们研究将它们组合成层压体系。实际上,众所周知,Al 2 O 3 具有极其优异的化学稳定性和热稳定性、大的带隙(约 9 eV)、与不同半导体衬底的带偏移大,但其生长会形成高的氧化物陷阱电荷密度,但其介电常数值并不高(约 9)[16]。对于 HfO 2 介电氧化物,虽然可以实现相当高的介电常数值(约 25),但由于其在相对较低的温度(约 500°C)下从非晶态转变为单斜晶态,因此可靠性较低,并且由于其带隙很小(5.5 eV)所以漏电流密度高[16]。在这种情况下,由两种 Al 2 O 3 -HfO 2 高 k 氧化物组成的纳米层状结构是提高热稳定性和维持高介电常数值的有前途的解决方案。
引言:液体电介质和绝缘聚合物是柔性电子器件的组成部分[1]–[4]。此外,微流体与微电子技术的集成为高频电子系统开辟了新的研究和开发领域。例如,过去十年来,许多研究都展示了通过流体调节天线输出频率、辐射方向图和极化的方法[5]–[14]。人们还利用流体研究了微波元件的频率调谐,包括滤波器[15],[16]、移相器[17],[18]、功率分配器[19],[20]和振荡器[21]。尽管前文提到流体电子学方面的研究成果日益增多,但关于用于实现这些系统的各种电介质流体和聚合物化合物的介电常数的公开数据却非常有限。在缺乏此类数据的情况下,研究人员通常依靠在某一频率下收集的介电常数数据来近似其设备在其他频率下的响应。直到最近,才开始出现关于感兴趣的介电流体宽带响应的介电光谱研究[22]。在本文中,我们报告了宽带复介电常数
抽象聚合物纳米复合材料(PNC)由于其在储能,电子,生物传感,药物输送,化妆品和包装行业中的应用而吸引了巨大的科学和技术兴趣。纳米材料(血小板,纤维,球体,晶须,杆)构成了这种PNC。聚合物基质中无机纳米材料的分散程度以及纳米材料的结构化排列是纳米复合材料总体性能的一些关键因素。为此,纳米材料的表面功能化决定了其在聚合物基质中的分散状态。用于储能和电子产品,这些纳米材料通常用于其介电特性以增强设备应用的性能。尽管已经报道了有关纳米材料表面修饰的几次评论,但目前缺乏与聚合物介质有关的纳米材料表面功能化的综述。本综述总结了重要的金属氧化物介电纳米材料的表面修饰的最新发展,包括二氧化硅(SIO 2),二氧化钛(TIO 2),钛盐(Batio 3)(Batio 3)(Batio 3)和氧化铝(Al 2 O 3)(Al 2 O 3),例如化学药品,例如silanes,silanes,silanes,silanic,phosphonic,phosphonic,phosphonic and phosphicam and phosphicam and phosphonic and phosphonic and phosphicam and phosphonic and phosphonic and phosphonic。我们报告了纳米材料的化学修饰对纳米复合材料的介电性能(介电常数,分解强度和能量密度)的影响。除了使新手和专家在聚合物介电纳米复合材料的领域加快速度外,此综述还将作为选择适当化学剂的智力资源,用于将纳米材料功能化,以在特定聚合物矩阵中使用,从而潜在地调整了纳米复合材料的精细性能。
摘要。从电缆绝缘到先进电子设备,介电材料在众多应用中都备受关注。设备小型化的新趋势使得对能够精确生产纳米级介电薄膜的需求不断增加。此外,通常还需要特殊的机械性能,例如在柔性有机电子领域。聚合物是此目的的首选材料。然而,通过湿化学方法生产具有低缺陷密度且不含残留溶剂等的精确纳米级薄膜极其困难。引发化学气相沉积 (iCVD) 是一种无溶剂聚合物薄膜沉积工艺,可用于生产具有纳米级控制的高质量介电薄膜,从而避免了这些问题。这项工作通过一些新的 iCVD 应用示例展示了 iCVD 工艺在电气应用领域的多功能性。例如,通过在柱状氧化锌 (ZnO:Fe) 气体传感结构上添加疏水性有机硅氧烷薄膜,乙醇到氢气的选择性发生了变化,并且在高湿度水平下的性能也得到了改善。因此,改进后的传感器可用于潮湿环境,尤其是用于呼吸测试,这可以通过尖端的非侵入性方法诊断某些疾病。
摘要:表面钝化是一种广泛使用的技术,可减少半导体表面的复合损失。钝化层性能主要可以通过两个参数来表征:固定电荷密度(𝑄ox)和界面陷阱密度(𝐷it),它们可以从电容-电压测量(CV)中提取。在本文中,使用模拟钝化参数开发了高频电容-电压(HF-CV)曲线的模拟,以检查测量结果的可靠性。𝐷it 由两组不同的函数建模:首先,代表不同悬空键类型的高斯函数之和和应变键的指数尾部。其次,采用了由指数尾部和常数值函数之和表示的更简单的 U 形模型。使用基于晶体硅上的二氧化硅(SiO 2 /c-Si)的参考样品的实验测量来验证这些模拟。此外,还提出了一种使用简单 U 形 𝐷 it 模型拟合 HF-CV 曲线的方法。通过比较近似值和实验提取的 𝐷 it 的平均值,发现相对误差小于 0.4%。近似 𝐷 it 的常数函数表示在复合效率最高的中隙能量附近实验提取的 𝐷 it 的平均值。
在有按键按下时,读键数据如下: SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 K1 1110_1111 0110_1111 1010_1111 0010_1111 1100_1111 0100_1111 1000_1111 0000_1111 K2 1111_0111 0111_0111 1011_0111 0011_0111 1101_0111 0101_0111 1001_0111 0001_0111 在无按键按下时,读键数据为: 1111_1111 ; 七、 接口说明 微处理器的数据通过两线总线接口和 TM1636 通信,在输入数据时当 SCLK 是高电 平时, DIO 上的信号必须保持不变;只有 SCLK 上的时钟信号为低电平时, DIO 上的信号 才能改变。数据输入的开始条件是 SCLK 为高电平时, DIO 由高变低;结束条件是 SCLK 为高时, DIO 由低电平变为高电平。 TM1636 的数据传输带有应答信号 ACK ,在传输数据的过程中,在时钟线的第九个 时钟芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低。 指令数据传输过程如下图(读按键数据时序):
预计将开发具有高能量密度和高安全性的全稳态电池(ASSB)。使用高容量负电极(例如锂金属和硅)以及高容量的正极电极(例如基于硫基于硫的氧化物和富含Li的氧化物材料)的主要挑战是,正和负电极的活性材料在充电和排放期间经历较大的体积变化。在该项目中,将开发适合这些高容量电极的机械性能,电化学稳定性和离子电导率的固体电解质。我们还专注于界面设计,以形成和维护电极和电解质,电池制造过程之间的固体界面以及高级分析和计算方法,以阐明循环过程中界面处发生的机制。该图显示了使用基于硫的阳性电极和晚期阳性液体使用富含Li的氧化物阳性电极的发育目标。我们将建立基本技术,以加速具有高能量密度和高安全性的Assb的商业化,并在将来实现GX。