复合材料具有许多非常适合航空航天应用的特性。先进的石墨/环氧复合材料因其高刚度、强度重量比以及抗疲劳和腐蚀性而特别受到青睐。迄今为止,研究重点一直放在复合材料零件的设计和制造上,而对其后续组装的成本和质量问题关注较少。对于由先进复合材料制成的飞机结构,组装成本占总制造成本的百分比估计在 25% 到 50% 之间。波音商用飞机集团对这个主题特别感兴趣,该集团打算在其下一代客机 777 上采用复合材料主结构。本研究的核心问题是“先进复合材料结构装配生产率问题的根本原因是什么?”在波音公司制造业领袖赞助的实习期间,获得了与复合结构装配相关的以下数据和信息:(1) 定量指标,包括分配给每个装配任务的劳动力百分比、返工占直接劳动力总量的百分比、计划装配流程时间和零件可用性;(2) 来自与波音制造和设计人员的访谈、讨论和观察的定性信息。
大型孔径天线不仅可以为传统的通信服务和雷达提供帮助,还可以实现新的通信,遥感,深空探测和电力传输航天器的新方法。较高的天线孔可保证更高的信号分辨率和信噪比,而其精度则驱动其空间分辨率和灵敏度。在过去,开发高孔径天线是一项技术挑战,受到高刚度和重组件而针对发射限制的部署的限制,但最近在轨道上自主制造和组装方面的进步为直接在太空中直接开发的大型和光线结构的发展打开了大门。但是,如果许多文献中的许多作品都集中在空间中的大型天线制造上,那么[1]中的许多工程挑战,例如表面准确性,航天器稳定性和部署可靠性,仍然对这些技术的实际去风险施加限制。拟议的项目具有提出大型天线的欧洲端到端轨内组装方案的发展,并通过小规模的实验基准表明其关键技术挑战。通过利用团队中可用的技能建模和控制大型柔性结构[2,3]和天线技术[4,5],该项目将重点放在:
*在VT的Macromolecules Innovation Institute(MII)上接受了采访并出现在材料研究协会(MRS)电视节目中。在秋季国际MRS会议和展览中播出的6分钟视频在马萨诸塞州波士顿(11月29日至12月29日至12月6日至8日,2021年),并在MRS网站上播出(至少在2021年11月29日至2022年1月14日)中。*由WDBJ Roanoke News采访,于2020年2月3日在电视上播出(记者Jen Cardone)。“ Virginia Tech研究人员致力于开发未来派电池” *为《华盛顿邮报》(Teddy Amenabar和Luz Lazo)采访了有关电池驱动的踏板车的文章 - 出现在2019年6月20日。“暂停在D.C.,Arlington和Alexandria发生火灾后的跳过踏板车服务” *材料研究协会(MRS)关于自然通讯“双螺旋”文章的公告特征文章,由Hortense Leferrand博士撰写,并于2019年5月发表。标题:“合成聚合物形成双螺旋形式具有高刚度的双螺旋” *基于网络的杂志“ The Verge”的访谈在便携式电话电池上 - 文章发表于2018年8月8日。*在弗吉尼亚州播出的国家公共广播电台(NPR)的两次访谈
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
摘要:近年来,由于汽车和航空航天等结构应用对减轻重量和提高性能的需求,金属的粘合剂粘合变得越来越重要。我们利用硬木生物质中的技术有机溶剂木质素和丙烯腈丁二烯共聚物橡胶 (NBR) 开发了用于粘合钢基材的可再生热塑性粘合剂。将丙烯腈摩尔比分别为 33%、41% 和 51% 的 NBR33、NBR41 和 NBR51 与木质素混合形成两相热塑性粘合剂,并测量其粘合性、粘弹性和表面特性。组合物中的木质素含量各不相同,范围从 40% 到 80% (w/w),以改变材料的韧性、刚度和表面能特性。NBR 中的腈含量越高,木质素和 NBR 相之间的相互作用或反应性越好,从而导致粘合剂的模量和刚度越大。同时,增加木质素的比例会降低韧性并提高刚度,在木质素负载率为 60% 的 NBR51 中测得的最高粘合强度为 13.1 MPa。表面能测量表明,总表面能(极性和分散表面能的总和)随木质素负载而上升,这表明表面能和基质强度对合成材料的粘合性能都起着关键作用。开发并实施了基于有限元的粘结区模型 (CZM),以研究粘合接头的破坏强度。这项研究证明了木质素作为粘合剂的宝贵组成部分的可行性,这不仅是因为其固有的化学结构和刚性,还因为其表面能特性。
摘要:纤维增强聚合物复合材料由于其高刚度,正在成为传统金属材料修复和替代中的重要且方便的材料。复合材料在其使用寿命期间会承受不同类型的疲劳载荷。增强纤维增强聚合物复合材料在疲劳应力下的设计方法和预测模型的动力依赖于更精确和可靠的疲劳寿命评估技术。在拉伸-拉伸疲劳场景中研究了纤维体积分数和应力水平对玻璃纤维增强聚酯 (GFRP) 复合材料疲劳性能的影响。本研究的纤维体积分数设置为:20%、35% 和 50%。使用万能试验机对样品进行拉伸试验,并使用四种不同的预测模型验证杨氏模量。为了确定复合材料的失效模式和疲劳寿命,对聚酯基 GFRP 样品在五个应力水平下进行了评估,这五个应力水平分别为最大拉伸应力的 75%、65%、50%、40% 和 25%,直到发生断裂或达到五百万次疲劳循环。实验结果表明,玻璃纤维增强聚酯样品在高施加应力水平下发生纯拉伸失效,而在低应力水平下,失效模式受应力水平控制。最后,利用不同体积分数的 GFRP 复合材料样品的实验结果进行模型验证和比较,结果表明,所提出的框架在拉伸-拉伸疲劳状态下预测疲劳寿命与实验疲劳寿命具有可接受的相关性。
摘要 - 对月球,火星及其他地区的开发任务需要多个空间基础设施。但是,将材料发送到太空的成本很高。一种缓解这种成本的方法是使用自适应基础架构,该基础架构可能利用可以根据相关环境和任务需求组装,拆卸并重新组装成多种机械结构的离散构件。的确,NASA可自动化的可重新配置自适应系统(ARMADAS)项目正在采用这种方法。由Armadas Engineers选择的离散建筑组件是Cuboctaheron,或更简单的“ Voxel”作为体积像素。体素轻巧且简单,并组装成具有高刚度和稳定性的可编程机械超材料结构。然而,完整体素的运输保持体积较大,并且在体内的制造体积为系统增加了显着的复杂性。在此,我们引入了一个Cuboctoctahedron Voxel设计,该设计在运输过程中压缩到其部署体积的35%,并在其目的地处于其扩展状态下被动锁,然后可以组装许多体素。受Hoberman Sphere的启发,Voxel设计用于使用一维力输入部署。我们进一步确认新的可部署体素与现有的Armadas组装代理兼容。索引术语 - 改变形状的机器人,变形机器人,模型基础设施,可重构基础架构
摘要:先进镜面技术开发 (AMTD) 项目为期 6 年,旨在完善 4 米或更大的单片或分段紫外/光学/红外空间望远镜主镜组件所需的技术,用于一般天体物理和系外行星任务。AMTD 采用科学驱动的系统工程方法。从科学要求开始,推导出主镜孔径、面密度、表面误差和稳定性的工程规范。影响最大的规范可能是每 10 分钟 10 pm 的波前稳定性。六项关键技术取得了进展:(1) 制造大孔径低面密度高刚度镜面基板;(2) 设计支撑系统;(3) 校正中/高空间频率图形误差;(4) 减轻段边缘衍射;(5) 调整段间间隙;(6) 验证集成模型。 AMTD 成功展示了一种制造尺寸达 1.5 米、厚度达 40 厘米的基板的工艺,该工艺通过堆叠多个核心元件并将它们低温熔合在一起来实现。为了帮助预测在轨性能并协助架构贸易研究,为两个镜子组件(由 AMTD 合作伙伴 Harris Corp. 制造的 1.5 米超低膨胀 (ULE ® ) 镜子和 Schott North American 拥有的 1.2 米 Zerodur ® 镜子)创建了集成模型。X 射线计算机断层扫描用于构建 1.5 米 ULE ® 镜子的“竣工”模型。通过在相关的热真空环境中测试全尺寸和子尺寸组件来验证这些模型。© 作者。由 SPIE 根据知识共享署名 4.0 未本地化许可证出版。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.JATIS.6.2.025001]
AFRP ARAMID纤维增强塑料一种基于Tri的化合物,具有钙钛矿结构,例如Bazro 3,Basno 3和Bahfo 3,短BAMO 3(M:METAR)化合物的芳香纤维纤维增强塑料的化合物。通过将这些BMO相掺入Rebco层作为杂质(人造固定中心),可以比平常获得更高的磁场特性。在PLD方法的情况下,RebCO和BMO相可以合作生长,通过沉积已提前与BMO掺杂的固体目标,并在RebCO层中形成了纳米棒形BMO相。顺便说一句,通过更改掺杂量和膜形成过程条件,可以在一定程度上更改BMO的形状和密度。 CFRP一种FRP,代表碳纤维增强塑料。 FRP是一种结合两种或多种材料的复合材料,通过将塑料(树脂)作为基础材料并将纤维添加为增强材料,可以将塑料的轻质和高成型自由结合起来,以及纤维的高刚度和强度特性。在FRP中,添加为加固材料的碳纤维称为CFRP。 FEM分析有限元法(FEM)分析。将连续对象分为有限的“元素”,使用简单的数学模型近似于每个元素的属性,并形成同时分析整体行为的方法。 FFD的电线面对面双堆叠的缩写。两条基于RE的超导电线的超导侧与焊料或类似相连。即使一根电线杆缺陷,电流也可以通过稳定层传递到另一根钢丝杆,从而增加了基于RE的超导线的产率。此外,应力中心是两条电线的中心,这使得具有高弯曲强度。 GFRP玻璃纤维增强塑料
摘要。我们描述了单个光圈大型宇宙研究(Saltus)任务的空间天文台结构和任务设计,国家航空航天及空间管理局(NASA)天体物理学探测器资源管理器的概念。Saltus将使用直径<45 K的主要反射器(M1)来解决关键的远红外科学,并将为行星,太阳系和银河进化研究和宇宙起源提供前所未有的光谱灵敏度。从诺斯罗普·格鲁曼(Northrop Grumman)广泛的NASA任务遗产中绘制,天文台飞行系统基于Leostar-3航天器平台,以携带盐盐有效载荷。有效载荷由通货膨胀控制系统,阳光模块(SM),冷校正器模块(CCM),温暖仪器电子模块和Primary反射器模块(PRM)组成。14-m M1是一种由两层阳光射线(每层约1000 m 2)冷却的轴膜片放射线。CCM校正了M1的残留差,并将聚焦的光束传递给两种仪器 - 高分辨率接收器(HIRX)和Safari-lite。CCM和PRM居住在基于桁架的复合甲板上,该甲板还为态度控制系统提供了一个平台。Saltus 5年的任务寿命是由两个可消耗的档案馆驱动的:推进剂系统和通货膨胀控制系统。核心界面模块(CIM)是一种多面复合桁架结构,提供了一个载荷路径,具有高刚度,机械附件和有效载荷和航天器之间的热分离。SM附着CIM外,其后端直接集成到总线上。航天器在太阳线方面保持了M1的态度的态度,以促进<45 K的热环境。盐盐将驻留在阳光下 - 地球光环2轨道,最大地球倾斜范围为180万公里,从而减少了轨道转移Delta-V。瞬时视野在黄道杆周围提供了两个连续的20度查看区域,从而在6个月内实现了全天空覆盖率。