7。职位描述:医学博士Cantas Alev教授的实验室在京都大学的人类生物学高级研究研究所(ASHBI),对人类和其他物种的早期胚胎发育的体外重建和分析感兴趣。我们的实验室正在利用经典胚胎学和基于多能干细胞的体外模型系统的组合。我们对中胚层形成和图案的体外概括特别感兴趣(即体外胃胃),中胚层器官发生和中胚型驱动的形态发生过程,包括人类和非人类多能干细胞(ESC/IPSC)的内胚和外胚层器官发生以及组织形成。与ASHBI的其他科学家合作,我们的实验室旨在在体外器官发生和“合成胚胎学”领域建立新颖的科学概念和破坏性技术,总体目标是提高我们对人类发展,疾病和进化的理解仍然有限。我们正在寻找具有积极进取和才华横溢的新成员,他们在“合成生物学”和体外器官发生方面分享了我们实验室的兴趣。我们特别寻找具有经验的候选人高含量3D/4D成像,单细胞RNA/ATAC-SEQ(和其他 - 组类型),AI-ML驱动的数据分析。在干细胞生物学和“器官”技术,基于CRISPR/CAS9的基因组编辑技术,包括光遗传学,微能力,生物材料在内的生物工程方法,基于CRISPR/CAS9的基因组编辑技术,基于CRISPR/CAS9的基因组编辑技术,生物工程方法的候选者。候选者。这是为快速新兴领域的建立和发展做出贡献的绝佳机会,同时解决了人类和其他物种的发展,疾病和进化的基本问题。如果您想成为我们动态,多样和包容性的国际研究团队的一部分,请申请。
Anima是MRNA生物学和AI交集的Tech.bio公司。我们正在推进MRNA闪电平台,以发现mRNA药物和靶标。在mRNA生物学方面具有十多年的专业知识,该平台将mRNA生物学与AI成像技术整合在一起,以可视化细胞中mRNA的整个生命周期,并解码一种疾病的mRNA生物学。利用来自健康和患病细胞的数百万张图像,我们训练疾病特异性的mRNA图像分析神经网络以识别疾病签名,这是一种基于疾病表型的mRNA生物学途径。然后,我们的TERA级mRNA生物学实验室从我们优化的mRNA调节剂库进行高含量筛选,将图像发送到我们的mRNA图像神经网络中,以识别活性化合物,即视觉上改变mRNA生物学签名的分子。我们的MOAI技术,mRNA生物学大型语言模型和闪电副驾驶在整个过程中工作,以阐明动作和分子靶标的机理。Anima的mRNA Lightning平台通过我们在治疗领域与礼来,武田和Abbvie的战略合作以及20个药物发现计划的管道来验证。Anima的全资MRNA生物学调节剂的全资管道具有免疫学(肺纤维化铅铅化合物在临床前阶段的进步),肿瘤学(实体瘤的铅化合物进入临床前阶段和针对淋巴瘤和神经母细胞瘤的其他程序),神经科学(Alzheimer and Pains and Pain)。我们的科学得到了7项专利,15份同行评审的出版物和17个科学合作的进一步验证。有关Anima Biotech的更多信息,请访问我们的网站https://www.animabiotech.com,并在@animabiotech上关注LinkedIn和Twitter。
目的:据报道,内皮菌落形成细胞(ECFC)在Moyamoya病(MMD)的发病机理中起重要作用。我们以前已经观察到具有小管形成功能障碍的MMD ECFC的停滞生长。我们旨在验证MMD ECFC功能缺陷所涉及的关键调节器和相关信号通路。方法:从健康志愿者(正常)和MMD患者的外周血单核细胞中培养ECFC。低密度脂蛋白摄取,流式细胞术,高含量筛选,与衰老相关的β-半乳糖苷酶,免疫荧光,细胞周期,小管形成,微阵列,实时定量聚合酶链链链,实时定量聚合酶链反应,小型干扰RNA转移和蛋白质布局及其蛋白质分析。结果:MMD患者中可以培养的细胞可以长期以来培养的细胞明显低于正常患者。与正常的ECFC相比,MMD ECFC与G1细胞周期停滞和细胞衰老的细胞增殖降低降低。途径富集分析表明,细胞周期途径是主要的富集途径,这与ECFC功能分析的结果一致。与细胞周期相关的基因,细胞周期蛋白依赖性激酶抑制剂2a(CDKN2A)在MMD ECFC中的表达最高。MMD ECFC中CDKN2A的敲低通过减少G1细胞周期停滞并通过调节CDK4和磷酸化视网膜细胞母细胞瘤蛋白来抑制衰老,从而增强了增殖。MMD ECFC中CDKN2A的敲低通过减少G1细胞周期停滞并通过调节CDK4和磷酸化视网膜细胞母细胞瘤蛋白来抑制衰老,从而增强了增殖。结论:我们的研究表明,CDKN2A通过诱导细胞周期停滞和衰老而在MMD ECFC的生长迟缓中起重要作用。
摘要这项研究介绍了突尼斯角豆豆荚的主要营养成分,通过热水提取(50°C 190分钟)获得的角豆汁的某些特性以及热巴氏杀菌的影响(70°C持续15分钟)。角豆豆荚显示出大量的糖(〜65 g/100 g干物质),可观的蛋白质含量(〜10 g/100 g干物质),灰分的大量含量(3.35 g/100 g干物质)和低水平的脂质(0.28 g/100 g干物质)。相应的果汁是根据物理特征,营养成分,微生物特征和感觉特性来表征的。结果显示高粘度,高含量可溶性糖和缺乏致病性。与参考果汁(水果鸡尾酒汁)相比,长者(80%)对角豆汁的总体可接受性很高。原始的角豆汁在70°C下热巴氏灭菌15分钟。研究了巴氏灭菌对颜色和清晰度,菌群和维生素C含量的影响。观察到菌群数的重要减少,尤其是1900年至270 CFU/mL的总菌群。在2.87到3.01的颜色值中也观察到显着增加,清晰度从0.87到1.04。与生汁相比,在巴氏灭菌汁中的维生素C含量中检测到显着降低。关键字:角豆荚;角豆汁;热水提取;热巴氏杀菌。1。引言角树(Ceratonia Siliqua L.)是地中海国家的常绿植物,包括突尼斯在内,沿海地区天然生长[1]。成熟的新鲜水果(角豆豆荚)由90%的果肉和10%的种子组成。Cacob Pod的营养成分根据角色零件,品种和气候而广泛不同[2]。角豆浆的特征是高糖含量(40-60%),
背景:糖尿病(DM)是非工业化国家的主要健康问题之一。根据国际糖尿病联合会的报告,糖尿病患有糖尿病的成年人不时在全球增长。全球,糖尿病占8.8%(4.249亿)的发病率和400万人死亡。埃塞俄比亚是经常受该疾病影响的国家之一,其中约有25.67亿(5.2%)患有糖尿病。目的:这项研究旨在确定埃塞俄比亚西田山地区Hawassa Zuria Woreda成年人口中糖尿病的患病率和相关因素。方法:基于社区的横断面研究是从2019年1月1日至2月15日进行的519名成人人群。使用多阶段抽样技术选择了研究参与者。我们采用了世界卫生组织(WHO)逐步方法来收集数据。禁食葡萄糖仪从静脉血液中用于测试血糖水平。EPI信息用于输入和清洁数据,并将数据传输到SPSS进行分析。使用糖尿病调整后的优势比(AORS)具有95%置信区间(CIS)的相关因素,并且认为p.Value <0.05被认为是显着的。结果:研究中总共包括516名参与者。发现糖尿病患病率为12.4%(95%CI:9.5–15.2)。肥胖,高血压,吸烟和高腰围是糖尿病的决定因素。与糖尿病相关的因素肥胖[AOR = 9.2,95%CI:4.3,19.8],高血压(AOR = 3.8,95%CI:1.75,8.4),吸烟(AOR = 7.8,95%CI:3.45,18.1)和高含量(3.45,18.1)和高纤维均为95%ENSE(AR)(95%)。结论:这项研究表明,发现糖尿病的患病率很高,这大于糖尿病的估计全国患病率。建议采取适当的行动,例如对定期血糖测试和预防措施提高社区意识。关键词:患病率,相关因素,糖尿病,梅利特斯,Hawassa Zuria Woreda
任务说明美国国家科学、工程和医学院将召集一个特设委员会,确定开发和演示未来探索任务所需的空间核推进技术的主要技术和项目挑战、优点和风险。事实证明,核推进可以为人类快速前往火星提供潜力,单程时间少于 9 个月,包括在火星表面停留的总往返时间少于 3 年。委员会还将确定每项技术的关键里程碑和顶层开发与演示路线图。此外,委员会还将确定成功开发每项技术可实现的任务。具体感兴趣的空间核推进技术包括:1. 高性能核热推进 (NTP),将氢推进剂加热到 2500K 或更高,产生至少 900 秒的比推力。 2. 核电推进 (NEP) 将热能转换为电能,为等离子推进器提供动力,用于高效快速地运输大型有效载荷(例如,功率水平至少为 1 MWe 且质量功率比(kg/kWe)远低于当前 NEP 系统水平的推进系统)。 行动计划 本研究应检查任务说明中所述的开发和演示 NTP 和 NEP 系统的优点和挑战。此项审查应考虑以下因素: 关键的技术和计划挑战和风险; 全尺寸系统级地面演示测试的选项; 放弃地面演示测试而进行飞行演示测试的优缺点; 开发一种燃料元件形式或其他反应堆子系统的前景,这些子系统可能对 NTP、NEP 和国防部战略能力办公室正在考虑开发的移动式 1-10 MW 功率反应堆中的至少两个是通用的; 选择高浓缩铀(HEU)而不是高含量低浓缩铀(HALEU)作为裂变材料所涉及的技术、计划和政策考虑; 美国国家航空航天局、能源部和工业界开发关键子系统技术以准备进行任务注入的能力(即技术就绪级别 6);以及 关键里程碑和顶层开发及演示路线图。
工业化和城市化的加速度将不可避免地导致HMS污染进入环境。尤其是在农业环境中,农业,施肥,灌溉和其他农业活动可能导致土壤中的HM浓度高,导致大多数HMS变得更加活跃,因此不可避免地会被农作物吸收(Dalcorso等,2013)。HMS由于其高毒性,隐藏性和团聚而成为作物影响最严重的污染物之一。hms可以通过抑制酶功能,破坏核酸结构并干扰植物营养素的摄取,从而对作物的生长,生物量和光合作用产生负面影响,从而对可持续食品产生构成威胁。此外,土壤中HMS的高含量也是农产品安全的挑战。过度摄入含有HM的食物会对人类健康造成不可逆转的伤害(Qin等,2021)。根际是植物吸收养分和微量元素的关键,它是土壤植物 - 微生物相互作用的界面。土壤中的重金属离子必须通过植物根部进入植物的体内。作为与植物最近的邻居,根微生物通过参与土壤腐殖质的形成和转化,土壤中养分的循环等,改善土壤结构和土壤肥力。同时,根微生物还可以分泌植物激素,以促进农作物对养分的吸收和利用,并增加农作物的根生长和生物量(Etesami和Maheshwari,2018; Manoj等,2020)。然而,高浓度的HM会通过诱导微生物代谢性疾病来引起非生物压力(Wyszkowska等,2013),例如蛋白质变性,细胞膜瓦解,改变酶特异性酶,特异性酶,破坏细胞功能和DNA结构(Abdu等,2017年的结构;微生物社区。值得注意的是,由HMS压力引起的根微生物结构和数量的变化可以严重影响根系的生态平衡,从而导致农作物生长的下降和农产品的质量(Shen等,2019)。因此,为了确保粮食安全和人类健康,迫切需要寻求适当的措施(土壤改善和微生物社区法规),以补救农田土壤中的HMS污染。
参考文献1。Presti,Daniele等。“肿瘤浸润淋巴细胞(TILS)是对实体瘤中检查点阻滞剂反应的预测生物标志物:系统评价。”肿瘤学/血液学的批判性评论177(2022):103773。2。Kashyap,A.,Rapsomaniki等,2022。肿瘤异质性的定量:从数据获取到度量期产生。生物技术的趋势。3。Reinhard,E。等。,2001。图像之间的颜色传递。IEEE计算机图形和应用程序,21(5),pp.34-41。 4。 van der Walt,S。等,2014。Scikit-image:Python中的图像处理。 Peerj,2,P.E453。 5。 van Griethuysen等,2017。 计算放射系统以解码放射线型表型。 癌症研究,77(21),第E104-E107。 6。 Thibault,G。等,2013。 形状和纹理将应用于细胞核分类。 国际模式识别与人工智能杂志,27(01),第1357002页。 7。 Young,I.T。等,1986。 表征细胞核中染色质分布。 细胞仪:国际分析细胞学学会杂志,第7(5)页,第467-474页。 8。 Wu,P.H。等,2020。 单细胞形态编码转移性潜力。 Science Advances,6(4),P.EAAW6938。 9。 Gough,A.H。等,2014。 PLOS ONE,9(7),P.E102678。 10。 Gough,A。等,2017。IEEE计算机图形和应用程序,21(5),pp.34-41。4。van der Walt,S。等,2014。Scikit-image:Python中的图像处理。Peerj,2,P.E453。5。van Griethuysen等,2017。计算放射系统以解码放射线型表型。癌症研究,77(21),第E104-E107。6。Thibault,G。等,2013。形状和纹理将应用于细胞核分类。国际模式识别与人工智能杂志,27(01),第1357002页。7。Young,I.T。等,1986。表征细胞核中染色质分布。细胞仪:国际分析细胞学学会杂志,第7(5)页,第467-474页。8。Wu,P.H。等,2020。单细胞形态编码转移性潜力。Science Advances,6(4),P.EAAW6938。9。Gough,A.H。等,2014。PLOS ONE,9(7),P.E102678。10。Gough,A。等,2017。在高含量分析中识别和量化异质性:异质性指数在药物发现中的应用。生物学相关的异质性:指标和实用见解。SLAS发现:前进生活科学研发,22(3),第213-237页。
Omega-3 长链多不饱和脂肪酸 (LC-PUFA)、二十碳五烯酸 (EPA;20:5 D 5,8,11,14,17) 和二十二碳六烯酸 (DHA;22:6 D 4,7,10,13,16,19) 现已被公认为健康均衡饮食的重要组成部分 (Napier 等人,2019 年;West 等人,2021 年)。供应 Omega-3 脂肪酸的野生捕捞渔业已达到可持续生产的最高水平;因此,满足日益增长的人口日益增长的需求的尝试依赖于替代鱼油来源 (Tocher 等人,2019 年)。亚麻荠 (Camelina sativa) 是一种油籽作物,含有高含量 ( > 35 % ) 的 α -亚麻酸 (ALA;18:3 D 9,12,15 ),并且已重建一条从 ALA 到亚麻荠 cv 中合成 EPA 和 DHA 的生物合成途径。 Celine 种子通过表达异源去饱和酶和延长酶基因,产生与海洋鱼油相当的 EPA 和 DHA 水平,以原型系 DHA2015.1(缩写为 DHA1)为例,积累了超过 25% 的 n-3 LC-PUFA(图 S1 和 S2(Petrie 等人,2014 年;Ruiz-Lopez 等人,2014 年)。英国、美国和加拿大的 DHA1 田间试验表明,omega-3 LC-PUFAs 特性在不同的地理位置和农业环境中是稳定的(Han 等人,2020 年)。同时,使用 DHA1 种子油的鲑鱼饲养试验和人类饮食研究均表明,这些转基因植物衍生油可以作为海洋衍生鱼油的有效替代品(Betancor 等人,2018 年;West 等人2021 年)。基于我们观察到的 ALA 是种子 omega-3 LC-PUFA 生产的内源性 C18 前体(Han 等人,2020 年),我们假设增加 ALA 库可以进一步增强 DHA1 亚麻荠中的 EPA/DHA 积累。DHA1 构建体已经含有 D 12 去饱和酶,可驱动脂肪酸流入 PUFA 生物合成(图 S1 和 S2)。然而,作为一种不太明显的方法,我们建议使用基因编辑的亚麻荠 fae1 突变体。亚麻荠 FAE1 与内源性 FAD2 D 12 去饱和酶(其
微生物长期以来对人类的生活至关重要,在食品和饮料生产,健康和疾病以及环境中发挥着重要作用。如今,微生物代表了一种创新的生物技术选择,也代表了生物学和功能分子的来源,用于制造新成分,新食品和功能配方[1]。源自微生物的产品和成分可能会对人类和动物健康产生有益的影响,并且可以在食品和饲料工业以及营养,化妆品和药物领域中成功使用。可听,微生物和微生物过程代表了营养和有益/功能成分的替代来源,也代表了获得具有不良营养和健康特征的产品的替代策略。从微藻到益生菌及以后,在粮食生产和营养中使用微生物已经开辟了研究和创新方面的新发展。这个特殊问题的重点是利用微生物过程和微生物本身作为营养和功能特性的替代来源的营养素和功能性食品的新发展。,它收集了探索Mi-croalgae作为替代食品来源的论文,因为它们作为食品,饲料,补充剂和营养配方的功能原料,以及一种降低某些传统食品生产的环境影响的环保策略。微藻可以在小区域生长,不需要大量的水,使其成为可持续的食物来源。在这种情况下,Chiellini等。根据Macaluso等人的说法。此外,微藻富含营养素,使其成为蛋白质和其他必需营养素的极好来源。[2]分析并比较了淡水环境中的11种微藻菌株的营养特性,重点是植物化学物质和体外抗氧化剂活性。结果有助于将四个菌株鉴定为同时大规模生长和生物活性复合产生的候选者,并表明生化参数和抗氧化活性根据溶剂和施加治疗而不是微藻类菌株而变化。这些发现可能对可持续和健康食品的发展有影响。[3],相同的微生物也可以在解决环境问题中发挥作用,例如,降低源自不同传统食品加工的污染潜力,例如橄榄油磨坊废水(OMWW),这在次生国家中是严重的污染物,由于其高含量是tannins and polid and polid and polidy and polidy and polyyals and Polidy and poly and polidy and polidy and poly and polidy and poly and poly and poly and polidy。研究人员证明,微藻可能是用于OMWW处理的低成本和环保的解决方案,并且可以在公司内开发微藻作为一种全尺度方法,以获取用于营养领域的强大的微藻生物量。