本手稿讨论了新的三合会输入双输出(TIDO)高增益DC-DC转换器首选用于微电网应用的有效分析。Tido Converter允许在输入处使用多个可再生能源发电机,并提供具有不同电压级别的双输出端口。Tido转换器具有高压增益,具有双向设施的多个端口,电压降低,当前应力和更好的工作效率。通过稳态分析,相关电压方程和波形详细介绍了所提出的转换器的电路配置。有效分析包括组件应力分析,损失分析和TIDO转换器的比较分析。使用PSIM软件模拟了建议的高增益TIDO DC-DC转换器。结果通过具有高晶粒输出电压的组件来验证各种组件和电流的电压,以有效的稳态工作性能。最后,有效地分析了15.45 kW,1000 V〜500 V 〜500 V DC-DC转换器中的中电压DC(MVDC)分布或混合电动汽车应用。
辐射束的RMS半径由两个竞争效应确定:光学引导(光束聚焦)和衍射(梁膨胀)。最小辐射半径大约是Fodo晶格中X和Y电子束半径的较大。
摘要 —本文介绍了一种基于半圆柱槽结构的高增益宽带圆柱介质谐振器天线(CDRA)。采用半圆柱槽结构将 CDRA 的高阶 HEM 12 σ 模式与槽谐振模式相结合,实现具有高增益特性的混合辐射模式。为进一步提高天线的实现增益,在不增加水平尺寸和轮廓的情况下对称使用一对寄生金属面板。此外,通过同时使用 HEM 12 σ 模式和槽模式,提出的由微带-带状线馈电结构馈电的高增益宽带 CDRA 实现了 5.92 GHz 的宽带宽。此外,通过利用馈电结构底部作为反射器的作用,无需进一步改进设计即可提高实现的增益。最后,设计、制造并测量了演示原型。所提出的天线在 27 GHz 左右的 22.1% 分数带宽 (FBW) 上实现了 12.9dBi 的峰值增益。测量结果与模拟结果非常吻合。它是 5G 毫米波无线通信的良好候选者。
热电子晶体管 (HET) 代表了一种令人兴奋的新型半导体技术集成器件,它有望实现超越 SiGe 双极异质晶体管限制的高频电子器件。随着对石墨烯等 2D 材料和新器件架构的探索,热电子晶体管有可能彻底改变现代电子领域的格局。这项研究重点介绍了一种新型热电子晶体管结构,其输出电流密度创下了 800 A cm − 2 的记录,电流增益高达 𝜶,采用可扩展的制造方法制造。该热电子晶体管结构包括湿转移到锗衬底的 2D 六方氮化硼和石墨烯层。这些材料的组合可实现卓越的性能,尤其是在高饱和输出电流密度方面。用于生产热电子晶体管的可扩展制造方案为大规模制造开辟了机会。热电子晶体管技术的这一突破为先进的电子应用带来了希望,可在实用且可制造的设备中提供大电流能力。
本论文由雪城大学 SURFACE 免费提供给您,供您开放访问。雪城大学 SURFACE 的授权管理员已接受本论文并将其收录到论文 - ALL 中。如需更多信息,请联系 surface@syr.edu。
摘要。本文讨论了一种具有圆极化特性的紧凑型 Koch 曲线分形边界天线。辐射器呈方形,四边有 V 型槽截头。分形结构的工作频带为 2.18 GHz 至 2.3 GHz 频段。沿辐射贴片的周边融入了二阶 Koch 分形曲线。分形天线由同轴探针馈电技术激励,对角放置以产生圆极化辐射。贴片元件采用 HFSS 设计,并制造在具有介电常数 (er = 2.2) 的基板 (RT/Duroid 5880 TM) 上,用于设计尺寸为 0.39 k 0 9 0.39 k 0 9 0.024 k 0 (fr = 2.26 GHz) 的分形天线。该结构表现出 6.93 dBi 的峰值增益响应以及覆盖工作频带的全向辐射模式。模拟和测量结果得到验证,并且发现所提出的设计适用于空间应用。
摘要。本文介绍了在 X 波段工作的高度集成固态功率放大器 (SSPA) 的设计和开发。最后的放大级采用 GaN 技术实现。据作者所知,这是高功率放大器中首次采用垂直方向放置最后的放大级,这可以显著缩小器件的占用空间,同时保持高输出功率和 PAE。该器件使用通过 SPI 接口控制的定制 BIAS ASIC 对整个 RF 链进行全数字控制,确保 SSPA 的高灵活性和稳定性。SSPA 的工作频率范围为 8.025–8.4 GHz,输入功率范围为 –20 dBm 至 0 dBm,输出功率为 20 瓦,功率附加效率 (PAE) 高达 35%。虽然所介绍的 SSPA 的主要应用是地球观测 (EO),但它也可以用于地面部分,例如雷达应用。
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
摘要 本文介绍了一种高增益运算跨导放大器结构。为了实现具有改进的频率响应的低压操作,在输入端使用体驱动准浮栅 MOSFET。此外,为了实现高增益,在输出端使用改进的自共源共栅结构。与传统的自共源共栅相比,所用的改进的自共源共栅结构提供了更高的跨导,这有助于显著提高放大器的增益。改进是通过使用准浮栅晶体管实现的,这有助于缩放阈值,从而增加线性模式晶体管的漏极-源极电压,从而使其变为饱和状态。这种模式变化提高了自共源共栅 MOSFET 的有效跨导。与传统放大器相比,所提出的运算跨导放大器的直流增益提高了 30dB,单位增益带宽也增加了 6 倍。用于放大器设计的 MOS 模型采用 0.18µm CMOS 技术,电源为 0.5V。
记录的版本:此预印本的一个版本于2021年3月26日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-021-22192-2的发布版本。