轨道设计:根据以下因素设计不同的轨道,例如(太阳同步轨道 - 重复地面轨迹轨道 - 临界倾斜轨道):高度、太阳高度角和滚动角,无推进系统或有推进系统。结果是:确定当地平均太阳时、覆盖面积、上升节点当地太阳时的变化、轨道衰减和脱轨卫星。
针对光伏发电光电跟踪精度低的问题,提出并设计了一种基于图像识别的新型太阳跟踪传感器。该传感器可直接输出其与太阳的角度偏差,并详细分析了其机械结构和工作原理。采用高精度相机采集投影仪表面两个缝隙的图像,利用Hough变换对光缝图像进行识别,求出两个缝隙的线性方程后,求出交点坐标,实现太阳高度角和方位角的计算。对Hough变换方案进行了改进,利用缝隙的骨架图像代替边缘图像,改进方案经验证可有效提高检测精度。利用标定测试板对传感器进行测试,实验结果表明,该方案可实现方位角和高度角的测量,精度可达0.05°,能够满足光伏发电太阳跟踪及多种光电跟踪实现对检测精度的要求。
尽管物理模型可以非常成功地消除大气和地形影响,但它们本质上依赖于精确的光谱和辐射传感器校准以及崎岖地形中数字高程模型 (DEM) 的精度和适当的空间分辨率。此外,许多表面都有双向反射行为,即反射取决于照明和观看几何。如果观察不是在太阳主平面进行,则通常假设各向同性或朗伯反射定律适用于小视场 (FOV < 30 o,扫描角度 < ± 15 o) 传感器。然而,对于大 FOV 传感器和/或靠近主平面的数据记录,自然表面的各向异性反射行为会导致图像中的亮度梯度。这些影响可以通过将数据标准化为天底反射值的经验方法消除。此外,对于在低当地太阳高度角下照射的崎岖地形区域,这些影响也会发挥作用,并且可以通过 ATCOR 包中包含的经验方法来处理。
在卫星通信中,链路边缘以及天线辐射特征是确保在空间和接地段之间提供牢固的通信联系的关键因素。用于遥测/遥控器和有效载荷数据传输,ISOFLUX天线被广泛用于卫星通信系统中,以有效地引导电磁波。为了降低复杂性和制造成本,首选简单的天线结构。在这项研究中,经过详细的文献调查,已设计了Polyrod天线,用于在低地球轨道卫星通信子系统的空间段中使用。所提出的polyrod天线在天线的60 0高度角下具有最大增益。此外,其阻抗带宽为750MHz(11%),足以在高数据速率发射器中使用。通过使用CST微波工作室TM,这是一种可商购的3-D电磁时间域求解器,方向性,增益,轴向比率,用于X波段的高程平面以及回报损失特征。基于获得的结果,可以在需要圆锥形束辐射图案的情况下使用设计的polyrod天线。
摘要 机电一体化系统设计的关键要素是从设计过程一开始就在整个设计过程中同时进行多学科知识的协同集成、建模、仿真、分析和优化,并针对更高的性能、速度、精度、效率、更低的成本和功能等约束,从而产生具有更多协同作用的产品。本文提出了基于机电一体化设计方法的智能太阳能跟踪系统的构想和开发,使得太阳能电池板在白天和季节变化中都能准确垂直于阳光光束(准确指向太阳),光照最强。整个系统和子系统同时进行选择、设计、集成建模、测试和优化;此外,还针对不同输入类型(包括实际输入高度角)验证了整体系统响应。所得结果表明设计的简单性、准确性和适用性,可以满足所有设计要求。所提出的设计可用于研究或教育目的。关键词:机电一体化设计,太阳跟踪器,建模/仿真。1.简介 1 机电一体化系统设计过程可分为系统、简单和清晰的设计步骤,包括:问题陈述;概念设计和功能规范;系统和所有子系统的并行(并发)设计和整体集成,包括:机械、电子、软件、控制单元、控制算法和接口子系统的选择、设计和协同集成;建模和仿真;原型设计、测试和优化;最后是制造和商业化(Farhan A. Salem 等人,2013 年)(Yu Wang 等人 2012 年)(Devdas Shetty 等人,2011 年)(Sarah Brady,2008 年)(L. Al-Sharif,2010 年)。本文提出了基于机电一体化设计方法的智能太阳能跟踪系统的构想和开发。2.预研究过程-问题陈述。在可再生能源中,太阳能是可持续能源最基本和先决条件的资源,因为它无处不在、丰富且