目前缺乏研究 2 型糖尿病与中心性肥胖之间关联的研究。因此,本研究旨在使用腰围身高比 (WHtR) 研究按中心性肥胖分层的 2 型糖尿病趋势。使用 WHtR,根据韩国国民健康和营养检查调查 (2005-2022) 的数据,通过中心性肥胖检查 2 型糖尿病的趋势。选择参与调查的 30 岁及以上的个人。根据血清葡萄糖或 HbA1c 水平、使用糖尿病药物或医生的先前诊断来识别 2 型糖尿病。计算加权 β 系数或奇数比 (OR) 和 95% 置信区间 (CI) 来评估疾病患病率的变化。数据库中共纳入 79,368 名参与者(女性:45,163 [56.9%])。 2005年至2022年,健康中心性肥胖组的2型糖尿病患病率从3.3%增至5.8%,中心性肥胖增多组的患病率从11.2%增至17.1%,中心性肥胖高度组的患病率从18.0%增至26.7%。男性、老年人、教育程度较低、家庭收入较低和吸烟与2型糖尿病的高风险相关。在中心性肥胖高度组中,超重和肥胖个体比体重过轻或正常体重个体具有更高的易感性,OR分别为5.85(95% CI,2.54~13.47)和8.24(3.79~17.94)。过去十年中,所有中心性肥胖群体的2型糖尿病患病率均有所增加。这强调了采取定制干预措施来解决差异并改善高危人群的糖尿病管理的必要性。
获得稳定且面容量超过 10 mA h cm − 2 的 S 正极是实现高能量密度配置的关键且不可或缺的步骤。然而,增加 S 正极的面容量往往会降低比容量和稳定性,这是由于厚电极中 S 的溶解加剧和可溶性多硫化物的扩散。本文报道了一种独立复合正极的设计,该正极利用 3D 共价结合位点和化学吸附环境来提供 S 物质的限制溶解和阻止扩散的功能。通过采用这种架构,纽扣电池表现出出色的循环稳定性和 1444.3 mA hg − 1(13 mA h cm − 2)的出色比容量,而软包电池配置表现出超过 11 mA h cm − 2 的显著面容量。这种性能与出色的柔韧性相结合,通过连续弯曲循环测试证明,即使在硫负载量为 9.00 mg cm − 2 的情况下也是如此。这项研究为开发具有更高负载能力和卓越性能的柔性 Li-S 电池奠定了基础。
摘要:在低碳能源系统中,由于高比例可再生能源接入会导致系统电压调节能力下降,因此一旦发生电压超标现象,容易造成大面积可再生能源脱网、停电事故。为了提高低碳能源系统的电压调节能力,本文提出了一种两级送端电网过电压抑制策略。首先,研究高比例可再生能源接入低碳能源系统送端电网过电压现象的发生原理,提出一种由整流站集中控制和分布式电源电网灵活资源控制两级组成的过电压控制策略。然后,利用PSO算法和一致性算法对建立的控制模型进行求解。最后,基于实际运行电网数据建立仿真系统,通过仿真验证所提出的控制策略。结果表明,本文提出的控制策略在各种运行工况下,均能有效抑制交流母线暂态过电压,提高高比例可再生能源送端电网的运行稳定性。此外,在白天过电压调节过程中,可以充分发挥柔性调节设备的潜力,缩短电压超限持续时间,降低电压超限峰值,有助于降低电网可再生能源浪费率。
在过去的十年中,由于其可持续性和力量,竹子引起了很多关注。竹子比其他天然纤维的优势包括其丰富的存在,高产量以及在3 - 8年内迅速达到最大高度和强度的能力。竹子可用作独立的结构材料和混凝土钢筋,形式为竹制,竹夹板和竹子复合杆,用于低层和低成本建筑。在这项研究中,采用竹棍作为混凝土立方体的加固。考虑了以下影响因素:竹棍的体积比为0.6%,1.2%和2.4%,竹棒直径为1毫米,1.5毫米和2毫米,以及10、20和30的竹棒纵横比的纵横比比。测试结果表明,添加了0.6%的棍子,BSRC抗压强度分别为20和30的长度比率分别上升了3.24和17.33%。通过添加1.2%和2.4%的竹棍,长度为10乘21.38和20.94%,可以增强样品的抗压强度。将获得的结果与常规混凝土立方体的机械性能进行了比较。目前,河岸和淡水是制造混凝土中最常使用的材料。河岸和淡水的广泛使用导致了重大的环境问题。由于世界上许多地方都缺乏适当的淡水供应,因此不建议过度使用这种资源。因此,使用盐水和海沙制成竹棒钢筋混凝土和普通混凝土标本。最后,提出了强度和应力应变模型。
摘要:纳米尺寸的电池型材料应用于电化学电容器中,可以有效减少电导率低、体积变化大带来的一系列问题,但这种方式会导致充放电过程以电容行为为主,造成材料的比容量严重下降。通过控制材料颗粒为合适的尺寸以及合适的纳米片层数,可以保留电池型行为而维持较大的容量。本文在还原氧化石墨烯表面生长典型电池型材料Ni(OH)2,制备复合电极,通过控制镍源的用量,制备出合适Ni(OH)2纳米片尺寸和合适层数的复合材料,在保留电池型行为的情况下获得了高容量的电极材料,制备的电极在2 A g −1 时比容量为397.22 mA hg −1。当电流密度增加到20 A g − 1 后,保持率高达84%。制备的非对称电化学电容器在功率密度为1319.86 W kg − 1 时的能量密度为30.91 W h kg − 1,20 000次循环后保持率可达79%。我们主张通过增加纳米片的尺寸和层数来保留电极材料电池型行为的优化策略,这可以显著提高能量密度,同时结合电化学电容器的高倍率性能的优势。■ 介绍
原子层沉积允许精确控制膜厚度和形式。它是高纵横比结构(例如3D NAND记忆)的关键推动因素,因为它的自限性行为比传统过程更高的合并性。然而,随着纵横比的增加,经常发生与完全保征的偏差,需要全面的建模以帮助开发新技术。到此为止,我们为存在不完整的整合性的原子层沉积过程中提供了一个模型。该模型结合了基于Knudsen扩散和Langmuir动力学的现有方法。我们的模型通过(i)通过Bosanquet公式融合了气相扩散率以及在Yanguas-Gil和Elam首先提出的建模框架中的反应可逆性,以及(ii)有效地集成在级别设定的地形模拟器中。该模型在侧面高纵横比结构中手动校准了Al 2 O 3的原型原子层沉积结果。我们研究了h 2 o步的温度依赖性,从而提取了0的活化能。178 eV与最近的实验一致。在TMA步骤中,我们观察到Bosanquet公式的精度提高,并以相同的参数集复制了多个独立的实验,这突显了模型参数有效地捕获了反应器条件。
摘要:电力系统中长期愿景及其形态演化分析是引领电力行业发展的重要先导性研究,尤其在我国提出2060年实现温室气体净零排放的新目标下,如何加快发展可再生能源成为新的关注点。本文尝试从灵活性平衡的视角探究含高比例可再生能源的未来电力系统形态演化指标。在回顾国际上关于未来电力系统发展愿景相关文献的基础上,总结了未来电网的特征及其驱动力的变化,并提出了一种全局敏感性分析方法。考虑到影响演化路径的多重不确定性因素,抽取大样本模拟电力系统演化,并以西北电网为例,分析了我国高比例可再生能源的演化路径。
HiSPEED 的目标是开发一种高效的推进系统,以便使用小型卫星进行深空探索。麻省理工学院空间推进实验室开发的离子电喷雾推进系统是首批提供紧凑高效推进系统之一,该系统与立方体卫星外形尺寸兼容。然而,现有的推进器头的寿命短于深空任务所需的发射时间。因此,我们考虑采用分阶段方法,将烧坏的推进器头弹出并更换,从而延长推进系统的整体寿命。
利用光伏无功功率和储能有功功率可以解决光伏接入低压配电网带来的电压越限、网损、三相不平衡等问题,但低压配电网三相四线结构给潮流计算带来困难。为实现通过潮流最优来利用光伏,提出一种基于三相四线系统潮流最优的低压配电网光伏储能协同控制方法。考虑电压和电流的幅值和相位角,采用三相四线节点导纳矩阵建立低压配电网网络拓扑结构,以最小化网损、三相不平衡度和电压偏差为目标,考虑电压约束、反向潮流约束和中性线电流约束,建立了基于三相四线网络拓扑的多目标优化模型。通过改进节点导纳矩阵和模型凸性,降低问题求解的复杂度,利用CPLEX算法包进行求解,并基于某21节点三相四线低压配电网进行24 h多周期仿真,验证了所提方案的可行性和有效性。
摘要 — 电动飞机的电力推进驱动器需要轻便高效的电源转换器。此外,驱动器的模块化构造方法可确保降低成本、提高可靠性和易于维护。本文首次报道了额定功率为 100 kW、1 kV 直流链路的模块化直流-交流三级 T 型单相桥臂电力电子构建块 (PEBB) 的设计和制造过程。由硅 IGBT 和碳化硅 MOSFET 组成的混合开关被用作有源器件,以实现高功率下的高开关频率。拓扑和半导体选择基于基于模型的设计工具,以实现高转换效率和轻量化。由于没有商用三级 T 型功率模块,设计了基于 PCB 和现成分立半导体的大功率开关用于中性点钳位。此外,还设计了一种非平凡的铝基多层层压母线,以促进所选有源器件和电容器组的低电感互连。测量的电感表明母线中的两个电流换向回路对称,值在 28 - 29 nH 范围内。估计该块的比功率和体积功率密度分别为 27.7 kW/kg 和 308.61 W/in3。证明了该块在 48 kVA 下的连续运行。测量结果显示该区块的效率为 98.2%。