摘要:天然生物聚合物已成为准备生物降解食品包装的关键参与者。然而,生物聚合物通常是高度亲水性的,这在与水相互作用相关的屏障特性方面施加了限制。在这里,我们使用多层设计增强了生物基包装的屏障特性,其中每一层都显示一个互补的屏障函数。氧气,水蒸气和紫外线屏障。我们首先设计了几种包含CNF和Carnauba蜡的设计。在其中,我们在包含三层的组装中获得了低水蒸气的渗透率,即CNF/Wax/CNF,其中蜡作为连续层存在。然后,我们在几丁质纳米纤维(LPCHNF)上掺入了一层木质素纳米颗粒,以在维持紫外线的同时引入完全屏障,同时保持纤维透明度。包括CNF/Wax/LPCHNF的多层设计启用了高氧(OTR为3±1 cm 3/m 2·Day)和水蒸气(WVTR为6±1 g/m 2·天),以50%的相对湿度为50%。它也对石油穿透也有效。氧气渗透性受纤维素和几丁质纳米纤维的紧密网络的控制,而通过组装的水蒸气散析则由连续的蜡层调节。最后,我们展示了我们的完全可再生包装材料,以保存商业饼干(干粮)的质地。我们的材料显示出与原始包装相似的功能,该功能由合成聚合物组成。关键字:纤维素纳米纤维,蜡,木质素颗粒,分层生物聚合物,可持续纤维,生物基包装■简介
胎儿神经干细胞 (NSC) 在生理上存在于低氧条件下(1% – 5% 的组织 pO 2 ),但通常被转移并维持在 21% pO 2 的大气氧水平(高氧)下以进行体外研究。这些改变的氧条件会导致 NSC 发生适应性变化,从而使体外数据的解释变得复杂。然而,潜在的适应动力学在很大程度上仍然是个谜。在这里,我们研究了短期高氧效应(3% pO 2 中 5 天,随后在 21% pO 2 中 2 天),并与持续高氧效应(21% pO 2 中 7 天)和生理氧对照(3% pO 2 中 7 天)进行了比较。我们利用皮质 NSC 通过流式细胞术和累积 BrdU 掺入测定法来分析细胞周期阶段。在持续高氧条件下培养时,NSC 的细胞增殖严重减少,但短期高氧后没有变化。随后通过流式细胞术进行的细胞周期分析表明,在持续和短期高氧条件下,NSC 明显从 G0/G1 期转向 S 期或 G2/M 期。然而,虽然短期高氧显著缩短了细胞周期,但在持续高氧条件下,细胞周期却增加了。总之,我们的结果证明了生理氧对体外扩增 NSC 的有益作用,并揭示了短期高氧与持续高氧相比的不同作用。
然而,大多数固体电解质的电化学稳定窗口通常不够宽,无法实现锂金属与达到如此高能量密度所需的 4 V 级正极的稳定循环。[11–13] 相反,如果没有形成钝化界面,大多数固体电解质往往会在与锂金属的界面处发生化学或电化学还原和/或在与正极的界面处氧化,导致循环性能差和循环寿命短。[14,15] 此外,锂金属阳极在充电时容易形成所谓的锂金属枝晶,枝晶会渗透到固体电解质中并导致电池短路。电池放电时,在锂金属和固体电解质之间的界面处形成的空隙会导致电流收缩,并被证明会促进枝晶的形成。[16–20] 因此,固体电解质不仅需要与锂金属和正极形成稳定的界面,还必须能够稳定地电镀和剥离锂金属。与无机固体电解质相比,聚合物固体电解质通常更柔韧,在循环过程中能够与电极保持更紧密的接触,从而减轻了锂金属和固体电解质界面处空隙的形成。然而,较低的室温离子电导率和较窄的电化学稳定窗口阻碍了它们的应用。[21–23] 在聚合物固体电解质中加入增塑剂有助于提高室温下的离子电导率,同时保持聚合物的柔韧性。[24–26] 聚合物基质,包括聚环氧乙烷 (PEO)、[26–29] 聚丙烯腈 (PAN)、[30,31] 聚甲基丙烯酸甲酯 (PMMA)、[32,33] 和聚偏氟乙烯-共-六氟丙烯 (PVDF-HFP) [34–37] 和增塑剂,如碳酸盐 [38–40]
引言人们早已认识到肿瘤具有免疫抑制作用,这解释了为什么肿瘤和肿瘤反应性免疫细胞可以在同一癌症患者体内和平共处(Hellstrom 悖论),也解释了为什么只有少数癌症免疫治疗患者能观察到持久反应(1、2)。受这一悖论的启发,我们小组的研究致力于解决这一重大问题,从而发现了一种基本的生化免疫抑制机制,该机制可保护重要器官免受抗病原体免疫反应的附带损害(3),并保护癌组织免受抗肿瘤免疫反应的损害(4)。在本综述中,我们总结了我们对缺氧/A2-腺苷酸免疫抑制的研究,这些研究已被其他几个小组证实和扩展,从而促成了目前对癌症抗缺氧/A2-腺苷酸免疫疗法的临床试验。这些试验通过防止抑制内源性发育或免疫疗法激活的肿瘤反应性免疫细胞,显示出了良好的结果(5、6)。为了进一步改善癌症免疫治疗,我们强调了氧合剂和呼吸性高氧相结合的优势
微塑料包含小于5 mm的塑料颗粒。由于植物生产的显着增加,微型塑料已成为全球无处不在的污染物。几项研究报告说,微塑料对生物体有害,因为它们由于其独特的物理化学特性而使环境中的污染物可吸附。可以在生物体中释放和积累的微型塑料上吸附的污染物,从而对人类和动物的健康产生不利影响。由于现有的水处理技术作为独立工艺无法完全去除微塑料,因此必须开发可恢复的方法。晚期氧化过程(AOPS)是对污染物(例如微塑料)化学处理的有前途的方法。这些过程利用高活性氧(例如,羟基自由基,硫酸盐自由基,超氧化物阴离子和单氧氧)完全分解了微塑料。但是,在此阶段,AOPS可以部分降解和/或改变微塑料的表面化学。因此,必须竭尽全力进一步研究AOP,以完全分解微塑料。