CP001 酚醛树脂 低 防弹应用 CP0014 环氧树脂 14 120 - 150 120 - 30 低 130 否 1 - 4 FST,耐热湿性 CP002 环氧树脂 21 75 - 160 330 - 10 低 120 否 0.8 - 3 FAR 25.853,高粘性 CP003 环氧树脂 42 70 - 170 500 - 4 极低 125 否 0.8 - 3 透明 CP004 环氧树脂 28 75 - 170 300 - 5 中等 125 否 0.8 - 5 高韧性 CP005 环氧树脂 14 90 - 160 300 - 15 中等 115 否 2 - 6 高韧性,FST CP006 环氧树脂 35 80 - 150 500 - 8 中等 150 否 0.8 - 5 高 坚韧 CP007 环氧树脂 28 75 - 160 350 - 7 低 165 否 0.8 - 3 高 Tg CP009 环氧树脂 3 - 10 70 - 170 500 - 4 中等 125 否 0.8 - 6 透明 CP012 环氧树脂 7 120 - 180 15 - 3 高 135 否 2 - 6 快速固化 CP103 呋喃 21 120 - 160 90 - 15 中等 100 - 315* 是 3 - 10 高 生物含量,FST
我们从毛利人那里听说,气候变化的影响有可能对其文化宗教和价值观构成生存威胁。海平面上升和洪水风险,再加上现有的土地所有权模式,意思是在某些地方,土地的传统用途将受到越来越大的压力。在其他地方,毛利人社区的紧密社会联系和文化网络将帮助他们发展适应性反应并提高韧性。与毛利人一起作为合作伙伴理解和采取行动,气候
Raycarb C2®B 被认为是一种可持续碳化人造丝,因为它是由轮胎帘线人造丝制成的。高性能轮胎的轮胎帘线人造丝市场稳定,预计会保持稳定。Heritage 系统依赖纺织人造丝,而人造丝在服装中的使用量持续下降。轮胎帘线人造丝是一种高韧性纤维,这可以转化为更高的机械性能。典型的织物特性如表 1 所示。Raycarb C2®B 的卷重约为 85 磅,标称宽度为 40 英寸。
家重点基础研究计划 (973) 和国家海洋勘测专项 、 科技兴海和国际海洋科学合 作计划等 , 大大推进了海洋科学技术的发展 , 在一些领域取得了具有独创性的成 果 , 海洋科技进入了一个新的发展阶段 。 但在总体上 , 我国海洋科技水平与国际 海洋强国相比还存在较大的差距 。 主要表现在 : ① 海洋科技发展不平衡 , 总体水 平与发达国家相比差距有 10 ~ 15 年 ; ② 海洋科技对海洋经济的贡献率低 , 只有 30% 左右 , 而发达国家达到 60% ~ 70% ; ③ 科技成果的转化率低 , 不足 20% ; ④ 海洋科技投入不足 。 海洋科技力量和资源利用整合度低 , 最直接的原因就是设 备材料难以适应严酷的海洋环境 。 海洋科技领域的发展是一项系统的工程 , 往往 是诸多领域科技发展的集成 , 但就最重要的基础而言 , 常常依赖于材料科技的发 展和突破 , 尤其依赖于专用海洋材料的研究和进展 。 与陆地使用材料不同的是 , 涉海材料用在海洋中 , 特别是在深海极端环境下 , 受到海水重压甚至高温及海洋 微生物的侵蚀 、 硫化物腐蚀 , 要求必须具有高强度 、 耐海水热液腐蚀 、 抗硫化腐 蚀 、 抗微生物附着 、 高韧性等特点 。 因此 , 系统研究海洋材料的微生物附着腐蚀 机理与防护将有助于国家海洋战略的发展 。
对热塑性复合材料的需求不断增加,因为这些材料在热固性工具中具有许多优势,例如高韧性,较长的存储时间,易于修复和回收,以及具有热成型和热量焊接的能力。但是,使用液体复合成型技术制造热塑性复合零件(例如树脂转移成型,真空辅助树脂转移成型。。。 )在熔融加工的情况下通常很棘手,在熔体过程中,由于热塑性塑料的高融化粘度,因此应选择高温和压力以浸渍纤维增强。可以通过反应性处理来克服这些问题,而低粘度单或寡聚前体首先浸渍了纯净的预成型,而热塑性基质的聚合则发生在原位。本文绘制了关于连续纤维增强基于丙烯酸的反应性热塑性塑料制造特征的最新技术(例如聚合甲基丙烯酸酯(PMMA)(PMMA)越来越流行。技术的甲基丙烯酸酯单体的原位聚合技术,流变特性和聚合动力学的表征和建模以及一些与制造相关的问题(例如聚合收缩)进行了综述。还引入了连续钢筋复合材料和潜在工业应用的不同制造技术中使用反应性PMMA的特定特征。最后,提出了学术研究和工业发展的一些观点。
三明治复合材料的概念是为了调整材料的强度和特定特性以获得量身定制的性能,但经常以多种模式恢复和应用。自然通常会应用它,在确保保护和柔和的核心的外骨骼之间进行了鲜明对比,允许各种动作,包括明智的流体传播,因此暗示着对整个系统的环境控制。尽管对适应性材料的开发是一种原始思想,但夹心复合材料越来越多地修饰和复杂,以增强其耐用性和功能的功能。这是该研究主题被构思的意义:查看对屏蔽皮肤和功能性核心之间这种二项式联系的某些研究主题的事实响应。这是收集的作品反映的,这确实代表了将自然概念与特定研究主题相关的需要,这些研究特定于三明治复合材料的性能。经常用作材料开发灵感的自然结构之一是贝壳,尽管它们的弯曲和分层结构更具体地提供了保护,同时阻碍了裂纹的繁殖。在Hu等人的工作中建立在此模型上。 分层的半导体结构确实通过基于氧化石墨烯和硫化钼的组装来通过提高换能器传感器的性能来实现刺激反应。在Hu等人的工作中建立在此模型上。分层的半导体结构确实通过基于氧化石墨烯和硫化钼的组装来通过提高换能器传感器的性能来实现刺激反应。真空吸力过滤允许尽可能多地重现生物壳的高韧性行为,以降低效果
[4] Ding, H., Liang, X., Xu, J., Tang, Z., Li, Z., Liang, R.* , & Sun, G.* (2021). 用于柔性传感器的超强拉伸、高强度和快速自恢复的水解水凝胶。ACS Applied Materials & Interfaces,13(19),22774-22784。[5] Tang, Z., Hu, X., Ding, H., Li, Z., Liang, R.* , & Sun, G.* (2021). 绒毛状聚(丙烯酸)基水凝胶吸附剂,具有快速高效的亚甲蓝去除能力。胶体与界面科学杂志,594,54-63。[6] Huo, P., Ding, H., Tang, Z., Liang, X., Xu, J., Wang, M., Liang, R.* , & Sun, G.* (2022)。具有高韧性和快速自恢复的半互穿网络导电丝素蛋白水凝胶,可用于应变传感器。国际生物大分子杂志。[7] 王梅、梁琳、刘倩、梁晓燕、郭红、李哲、梁荣* 和孙光杰 (2022)。磷酸氢二钾对磷酸镁钾水泥性能的影响。建筑与建筑材料,320,126283。[8] 郭红、唐哲、刘倩、徐建、王梅、梁荣* 和孙光杰 (2021)。超吸水绒毛状纳米复合水凝胶实现超稳定防冲刷水泥浆。建筑与建筑材料,301124035 [9] 刘倩、陆哲、胡晓、陈斌、李哲、梁荣*、孙光杰* (2021)。水泥基体原位聚合制备机械强度高的聚合物-水泥复合材料。建筑工程杂志,103048。 [10] 郭华、徐建、唐哲、刘倩、王明、梁荣*、孙光杰* (2022)。超吸水聚合物基防冲刷外加剂对海水混合水泥浆体性能的影响。材料与结构,55(2),1-14。 [11] 王明、刘倩、梁荣、徐建、李哲、梁荣*、孙光杰 (2022)。偏高岭土对高水固比磷酸镁钾水泥性能的影响。土木工程材料学报,34(9),04022227。
近年来,激光添加剂制造(LAM)技术引发了航空航天场的制造革命[1,2]。该技术使用高能激光束融化合金粉末。熔融池是连续形成的,然后迅速形成固体,从而将层沉积到近乎网络的金属成分[3]。钛合金作为重要的结构金属具有高强度,高韧性,低密度和良好耐腐蚀性的优势[4-6]。使用LAM准备钛合金零件有望获得高性能和高质量的关键组件。钛合金零件在LAM过程中经历了高温梯度和高冷却速率,从而导致与传统材料的微观结构差异很大。通常,在先前的β晶粒中存在α相,马氏体α'相或两者的混合物,并且连续α相也沿先前的β晶界嵌入[7-9]。Carroll等。 [10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。 此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。 通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。 Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Carroll等。[10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Yadroitsev等。[16]报告说,在β相过渡温度附近产生了大量球形α相。Zhao等。Zhao等。[17]通过控制冷却速率,获得了两种类型的篮子编织和菌落结构的微观结构。拉伸结果表明,前者具有更高的强度和韧性,这可能归因于篮子编织结构中的层状α相,从而有效地减少了脱位长度并分散局部应力浓度。但是,由于缺乏在拉伸过程中微观结构演变的观察,变形和失败
教育经历 1980-84 英国剑桥大学冶金与材料科学博士学位 1980-81 英国剑桥大学自然科学研究生学习证书 1975-80 印度理工学院、贝拿勒斯印度教大学冶金工程技术学士学位 专业经历 2014 年至今 冶金与材料工程系教授、系主任、Freeport McMoRan 冶金与材料工程杰出教授 2009-2014 路易斯安那大学拉斐特分校材料科学与工程杰出教授(化学工程系) 2013-14 材料研究与创新研究所所长(创始所长 - 2013 年) 2013-14 路易斯安那大学拉斐特分校路易斯安那加速器中心副主任 2004-14 路易斯安那大学拉斐特分校结构与功能材料中心主任拉斐特(创始主任 - 2001 年构思,2004 年成立并获批准) 2001-14 路易斯安那大学拉斐特分校 Stuller 冶金学讲座教授兼教授 2012-至今 中国东北大学名誉教授 1984-98 印度国防冶金研究实验室科学家 研究兴趣 高强度高韧性组合金属和合金;纳米结构材料;生物材料;先进性能材料;能源系统材料;聚合物纳米复合材料 - 特别关注加工-微观结构-性能关系;变形和断裂。这些感兴趣的领域涉及使用广泛的材料表征技术,包括透射和扫描电子显微镜、电子背散射衍射 (EBSD)、电子断层扫描、原子力显微镜和机械测试。奖项、荣誉和专利 2013 年印度贝拿勒斯印度教大学杰出校友奖 2013 年路易斯安那大学拉斐特分校创新者奖 2012 年美国专利 (8197890 B2),“制造磁性纳米棒的方法。” 2011 年美国专利 (7964013 B2),“用于超高密度存储介质的 FeRh-FePt 核壳纳米结构。” 2009 年杰出大学教授 2009 年美国专利 (7504130 B1),“合成具有磁核和光催化壳的抗菌纳米粒子的方法:TiO 2 -NiFe 2 O 4 体系。” 2009 年美国专利 (7635518),“树枝状磁性纳米结构及其制造方法。” 2007 年英国材料研究所颁发的 2007 年 Charles Hatchett 奖。 2007年荣获英国材料学会颁发的2007年度复合材料奖。