自加拿大将大麻合法用于非医疗用途以来的五年里,研究人员开发了数据收集流程,以帮助我们了解大麻的使用模式。根据加拿大大麻调查,26% 的 16 岁及以上受访者报告在过去一年中吸食过大麻(加拿大卫生部,2024 年)。虽然大多数大麻消费者报告每月使用大麻三天或更少,但约 15% 的消费者报告每天使用大麻(加拿大卫生部,2024 年)。高频率消费,特别是高 THC 大麻,对消费者的风险大于不频繁消费(Steeger 等人,2021 年)。虽然大麻消费的健康风险远低于酒精或烟草(Nutt 等人,2007 年),但重要的是要评估大麻在这个相对较新的法律和社会背景下的潜在危害,以便为消费者提供有效的减害信息。
随着设备加工精度的发展和半导体材料掺杂的均匀性,由于设备的生产过程,由铜所代表的金属互连设备的瓶颈变得越来越明显。金属的性能在微尺度上显着恶化,而碳纳米管组件结构在此规模上具有很大的优势。除了具有高于铜的高电导率外,CNT还具有出色的导热率,可以支持良好的热管理和热量耗散。CNT的另一个重要方面与其焊料的独特特征和高频工作能力有关。纳米焊接技术涉及局部加热CNT bers以产生交联的bers。1,2基于这项技术,可以通过CNTber构建各种结构,包括2D网络和3D笼子,并且可以生产可编程的电路。此外,CNT可以在40 GHz或更高频率的高频率下使用高性能,这代表了由于其性质而无法克服的金属的局限性。此外,散热已成为限制
由于纳米结构组件在成本中占很大比例,并且在新设计的产品中起着关键作用,因此纳米可靠性研究极其重要。将功能性“智能”纳米材料集成到独立的 MEMS 设备中,极大地拓宽了微型系统的功能应用空间,包括用于生物医学应用的微流体和生物兼容微型设备。未来几十年,新兴纳米材料、纳米电子结构和纳米 MEMS 平台的集成水平将达到前所未有的水平。如今,深亚微米 CMOS 技术是开发现代计算机系统的基础,该系统广泛应用于几乎所有应用领域。晶体管尺寸的稳步减小允许高频率、更低的功耗和更高的性能。这提高了 VLSI 系统的性能,但对其可靠性产生了负面影响,大大增加了
丹麦已设定在未来几年内建立一个完整的可再生能源电力和供热系统,到 2020 年丹麦的可再生能源份额将达到 68%。然而,实现绿色转型面临挑战,因为与传统能源工厂相比,可再生能源可能导致系统紊乱。其中一个想法是部署将电能转换为其他形式能源的储能装置。这被称为电转X (PtX) 技术。然而,在电网系统中部署 PtX 可能会在系统发生紊乱时影响稳定性。因此,本项目旨在对 PtX 技术及其动态行为进行建模,以研究 PtX 集成对电网系统的影响。模拟了几种研究 PtX 集成对系统响应的方案,例如对称故障和不对称故障注入以及发电单元损失。结果表明,开发的 PtX 模型可以为系统提供服务并提高频率和电压性能。
摘要:在 2016 年碱基编辑技术发展之前,基因组编辑技术通过在目标基因组位点引入双链 DNA 断裂 (DSB) 作为基因组编辑的第一步来发挥作用。这通常使用 Cas9(一种可编程的核酸内切酶)和一段称为向导 RNA (gRNA) 的 RNA 来实现,该 RNA 编码了 Cas9 将使用简单的 Watson-Crick-Franklin 碱基配对规则结合和切割的基因组位置。DSB 的细胞处理会产生多种基因组编辑产物,包括精确编辑结果以及插入和删除 (indel) 副产物。自 1990 年代基因组编辑领域成立以来,indel 与精确产物的高频率一直是该领域的长期挑战。在这里,我将介绍我的实验室为开发具有更高效率和精度的新基因组编辑方法所做的努力。其中包括开发新的碱基编辑器(BE)工具,以及提高依赖 DSB 方法的精度的新方法。
已经开发出测试方法来比较聚醚醚酮 (PEEK) 热塑性聚合物在准静态、高应变率拉伸试验和疲劳载荷下的机械响应和失效行为。拉伸试验的应变率从 0.0003 s − 1 到 60 s − 1,并在不同的温度下进行,以比较样品在不同测试条件下的流动特性。还进行了不同幅度和频率的疲劳试验,以评估循环载荷期间的温升及其对断裂行为的影响。结果表明,与准静态行为相比,动态拉伸会导致脆性断裂;而在高频率和载荷幅度的疲劳试验下,材料不仅表现出更延展的行为,而且还清楚地表明诱导自热对 PEEK 的模量和机械性能有显著的影响。因此,本文的主要目的是讨论诱导温度及其对断裂表面的影响。热疲劳在提高温度和缩短疲劳寿命方面起着非常重要的作用;因此,有必要了解热疲劳发生的条件以及消耗的能量。从实验结果和计算中获得的方程可以估算疲劳试验中的能量耗散,它是循环和频率的函数。
• 自适应和可扩展的监控:基于人工智能的模型能够快速处理大型数据集,并突出显示潜在市场操纵相关活动的演变模式。基于人工智能的模型处理大型和多样化数据集的能力可以帮助公司更适当地识别和管理风险。机器学习模型在处理不确定性方面脱颖而出,因为它们可以提供与其预测相关的置信度分数或概率,这在处理不同的交易和订单行为时很有价值。人工智能/机器学习的个性化功能使创建更切题且符合各种金融工具独特市场动态的警报成为可能。根据他们的风险偏好和交易方法,人工智能允许组织自定义警报阈值。例如,借助人工智能/机器学习模型,可以为各种客户设置动态阈值/参数。可以使用复杂的交易算法将交易额/交易活动较少且手动交易的客户与交易量大且低延迟/高频率流量的客户区分开来。借助人工智能,可以在为此类活动生成警报时做出明确区分。
已经开发出测试方法来比较聚醚醚酮 (PEEK) 热塑性聚合物在准静态、高应变率拉伸试验和疲劳载荷下的机械响应和失效行为。拉伸试验的应变率从 0.0003 s − 1 到 60 s − 1,并在不同的温度下进行,以比较样品在不同测试条件下的流动特性。还进行了不同幅度和频率的疲劳试验,以评估循环载荷期间的温升及其对断裂行为的影响。结果表明,与准静态行为相比,动态拉伸会导致脆性断裂;而在高频率和载荷幅度的疲劳试验下,材料不仅表现出更延展的行为,而且还清楚地表明诱导自热对 PEEK 的模量和机械性能有显著的影响。因此,本文的主要目的是讨论诱导温度及其对断裂表面的影响。热疲劳在提高温度和减少疲劳寿命方面起着非常重要的作用;因此,有必要了解热疲劳发生的条件以及消耗的能量。从实验结果和计算中获得的方程可以估算疲劳试验中的能量耗散,它是循环和频率的函数。
二维材料,如石墨烯、六方氮化硼 (hBN) 和过渡金属二硫属化物 (TMD),本质上具有柔韧性,可以承受非常大的应变(> 10% 的晶格变形),并且它们的光电特性对施加的应力表现出清晰而独特的响应。因此,它们在研究机械变形对固态系统的影响以及在创新设备中利用这些影响方面具有独特的优势。例如,二维材料可以轻松地将纳米级机械变形转换成清晰可检测的电信号,从而能够制造高性能传感器;然而,同样容易的是,外部应力可以用作“旋钮”来动态控制二维材料的性质,从而实现应变可调、完全可重构的设备。本文回顾了在纳米级诱导和表征二维材料机械变形的主要方法。在介绍有关这些独特系统的机械、弹性和粘合性能的最新成果之后,简要讨论了它们最有前景的应用之一:实现基于振动二维膜的纳米机电系统,该系统有可能在高频率(> 100 MHz)和大动态范围内运行。
迄今为止,大多数基因组编辑分析都是基于量化小插入和缺失。在这里,我们表明 CRISPR-Cas9 基因组编辑可以在不同的原代细胞和细胞系中诱导较大的基因修饰,例如缺失、插入和复杂的局部重排。我们使用不同的方法分析了造血干细胞和祖细胞 (HSPC) 中的大型缺失事件,包括克隆基因分型、液滴数字聚合酶链反应、具有唯一分子标识符的单分子实时测序和长扩增子测序分析。我们的结果表明,在 HSPC 中的 HBB(11.7 至 35.4%)、HBG(14.3%)和 BCL11A(13.2%)基因以及 T 细胞中的 PD-1(15.2%)基因的 Cas9 靶向切割位点处,高达数千个碱基的大量缺失以高频率发生。我们的发现对于推进基因组编辑技术治疗人类疾病具有重要意义,因为非预期的大规模基因修饰可能会持续存在,从而改变生物学功能并减少可用的治疗等位基因。