摘要 脑机接口 (BCI) 是一种允许人们绕过周围神经系统 (PNS) 的自然神经肌肉和激素输出与环境互动的系统。这些接口记录用户的大脑活动并将其转换为外部设备的控制命令,从而为 PNS 提供额外的人工输出。在这一框架中,基于 P300 事件相关电位 (ERP) 的 BCI 已被证明特别成功和强大,ERP 表示特定事件或刺激后从大脑记录下来的电反应。通过分类算法确定 EEG 特征中是否存在 P300 诱发电位。线性分类器(例如逐步线性判别分析和支持向量机 (SVM))是 ERP 分类中最常用的判别算法。由于 EEG 信号的信噪比较低,因此在对信号进行分类之前,需要执行多个刺激序列(又称迭代)并取平均值。然而,虽然增加迭代次数可以提高信噪比,但也会减慢该过程。在早期的研究中,迭代次数是固定的(无停止环境),但最近文献中提出了几种提前停止策略,以便在满足某个标准时动态中断刺激序列,以提高通信速率。在这项工作中,我们探索了如何通过结合优化和机器学习来提高基于 P300 的 BCI 中的分类性能。首先,我们提出了一个新的决策函数,旨在提高无停止和提前停止环境中的分类性能(准确度和信息传输速率)。然后,我们提出了一个新的 SVM 训练问题,旨在促进目标检测过程。我们的方法在几个公开可用的数据集上被证明是有效的。
主要关键词