横滨LTO
可下载资源数量
{[down_number]}
10次
已经购买
下载数量:1
单价
0
1.0
Coupon
100%
0%
Total
0
1.0
点击下载
点击购买并下载
点击购买,资源将自动在新窗口打开.
×
Loading...
人工代下载
小计
杂项
总计
0
个米粒
查看全部
国际科研文献搜索
国际快讯
主要栏目
国防要闻
全球经济
科技动态
航空航天
人工智能
网络安全
国防标准
国际标准
国际政策
国际事务
北约/欧盟
军事学院
教育培训
国际智库
军工集团
国防要闻相关机构
美国国防部新闻
俄罗斯国防部-创新公报
美国国防部探索
美国陆军官网
美国陆军网络司令部
美国海军新闻发布会
美国海军陆战队新闻
美国空军太空技术
美国空军创新
人工智能相关机构
AI新闻
亚马逊云科技 _机器学习
大数据分析新闻
NVIDIA 博客 _机器人技术
Apple机器学习研究
北约/欧盟相关机构
欧洲联盟理事会新闻
欧洲联盟理事会欧洲理事会会议
NATO Watch
国际智库相关机构
美国进取研究所信息
兰德国防安全研究中心首页
科学与国际安全研究所信息
英国皇家战略研究所新闻
美国数学政策研究中心信息
澳大利亚研究所新闻
科技动态相关机构
LiveScience
日本NLI研究所信息
美国国家标准与技术研究院__纳米技术
航空航天相关机构
航空界
国防镜报
BAA Training博客
航空资源新闻
全球经济相关机构
纽约时报 _经济
经济时报
经济观察
CityAM经济学
教育培训相关机构
斯坦福社会创新评论(SSIR)
哈佛大学学报
普林斯顿大学
约翰霍普金斯大学
宾夕法尼亚州立大学
BIG SALE
Up to
70%
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
点击订阅喽!
* 限···时··优惠
查看
所有分类和相关机构
点击查看所有机构
查看所有分类和相关机构
文件翻译
超大PDF文件翻译
用户中心
注册
登录
修改密码
重置密码
登出
账户余额
订阅和下载
我的国际快讯订阅
人工代下载列表
进行中订单
已完成订单
机构名称:
横滨LTO
¥ 1.0
热度
松下大厦★★LaLaPort 购物中心
添加pdf代下载
VIP点击下载文件
横滨LTO
Facebook
Twitter
Instagram
Mail
主要关键词
LaLaPort
购物中心
松下
大厦
相关文件推荐
2021 年
多尔核电站多尔 1 号和 2 号机组的 LTO
¥65.0
2021 年
多尔核电站多尔 1 号和 2 号机组的 LTO
¥65.0
2021 年
多尔核电站多尔 1 号和 2 号机组的 LTO
¥65.0
2021 年
多尔核电站多尔 1 号和 2 号机组的 LTO
¥65.0
2021 年
Doel 核电站 Doel 1 号和 2 号机组的 LTO
¥65.0
2023 年
工业日横滨北码头,2023 年 7 月 24 日
¥1.0
2022 年
日本横滨虚拟 - WCCM 2022
¥13.0
2016 年
飞机 LTO 循环污染物排放建模...
¥1.0
2019 年
肾小球病理学发现的分类 UP LEARNING 和肾病专家 - AI 集体 ENGROCTIVE 方法 Eiichiro Uchino #A,B Yugami C , Sachiko Minamiguchi f , Hironi Haga f , Motoko Yanagita B,g , Yasushi Ono D,HA) 京都大学医学院医学智能系统系,日本京都 B) 日本京都肾脏病学系,日本京都,京都,京都,京都,京都,京都,京都,日本 D) 京都大学医学院生物医学数据智能系,日本京都 E) 京都大学医院医学信息学和管理规划部,日本京都 F) 京都大学医学院诊断病理学系,日本京都 H) Rise,药物开发数据智能平台小组,日本横滨 # 这些作者贡献者对这项工作做出贡献。 Running title: Glomeruli classification by deep learning Keywords: renal pathology, artificial intelligence, deep learning, collective intelligence Corresponding authors: Yasushi Okuno, Department of Biomedical Data Intelligence, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 881, FAX: +81-75-751-4881, E-mail: okuno.yasushi.4c@kyoto-u.ac.jp and Motoko Yanagita, Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan Phone: +81-75-751-3860, FAX: +81-75-751-3859, E-mail: motoy@kuhp.kyoto-u.ac.jp Abstract Background Automated classification of glomerular pathological findings is potentially beneficial in establishing an efficient and objective diagnosis in renal pathology.虽然先前的研究已经验证了用于对整体硬化和肾小球细胞增殖进行分类的人工智能(AI)模型,但诊断还需要其他一些肾小球病理学发现。这些人工智能模型与临床医生之间的合作是否能提高诊断性能还不得而知。在这里,我们开发了人工智能模型来对肾小球图像进行分类,以获得病理诊断所需的主要发现,并研究这些模型是否可以提高肾病科医生的诊断能力。方法
¥1.0