摘要 - 尽管许多研究已成功地将转移学习应用于医学图像分割,但是当有多个源任务可转移时,很少有人研究了选择策略。在本文中,我们提出了一个基于知识的知识和基于可传递性的框架,以在大脑图像分割任务集合中选择最佳的源任务,以提高给定目标任务上的转移学习绩效。该框架包括模态分析,ROI(感兴趣的区域)分析和可传递性效率,以便可以逐步对源任务选择进行。特别是,我们将最先进的分析转移能力估计指标调整为医学图像分割任务,并进一步表明,基于模态和ROI特征的候选源任务可以显着提高其性能。我们关于脑物质,脑肿瘤和白质超强度分割数据集的实验表明,从同一模式下的不同任务转移通常比在不同方式下从同一任务转移的实验更成功。此外,在相同的方式中,从具有更强的ROI形状相似性与目标任务的源任务转移可以显着提高最终传输性能。可以使用标签空间中的结构相似性指数捕获这种相似性。索引术语 - 转移学习,医学图像分析,来源选择I。