机载激光扫描 (ALS)、现场图和预测模型的结合使用是当今芬兰森林管理导向清单中最重要的信息来源 (Maltamo 和 Packalén 2014)。ALS 也是国家森林清单 (Grafström 和 Hedström Ringvall 2013) 和收获前林分测量 (Peuhkurinen 等人2007)。在实际的森林规划中,树种需要信息 (Packalén 2009)。航空影像通常用于解释树木种类和其他难以通过激光扫描数据预测的属性(例如 Packalén 和 Maltamo 2007;Ørka 等人2013)。清单验证表明,基于 ALS 数据的清单(Wallenius 等人2012)比使用传统基于现场的方法(Suvanto 等人2005)获得的清单更准确。此外,无论是在评估树种特定属性(例如 Packalén 和 Maltamo 2007;Breidenbach 等人2010)还是在测量单个树木属性(例如 Korpela 等人2010;Vauhkonen 2010;Yao 等人2012;Silva 等人2016)时,准确度至少与传统的现场评估相同。然而,需要进一步研究以提高基于 ALS 的森林资源清查中树木质量评估的准确性(Wallenius 等人2012)。芬兰森林中心收集、维护和分发芬兰森林的林分属性信息(芬兰森林中心 2019a)。数据基于实地调查和遥感的结合使用。模型用于预测木材体积和更新数据。实地图用作训练数据,ALS 用于将结果推广到大面积调查区域。由于《森林信息法》的修订于 2018 年 3 月初生效,许多信息通过 Metsään.fi 服务(https://www.metsaan.fi/)向公众开放。关于按树种划分的锯木和纸浆木材采伐的信息对于木材销售和采伐作业规划至关重要。树木质量特征信息也很重要(Holopainen 等人2013 年)。在预测木材种类时,训练数据应具有关于锯木和纸浆木材移除量的精确林分水平信息,这在实践中只能由采伐机测量(Malinen 等人2003 年)。2012 年;White 等人2013 年)。先前关于 ALS 清单准确性的研究通常将基于 ALS 的林分属性估计与实地测量进行比较(例如,Næsset 2007;Wallenius 等人。这些比较的问题在于,部分实地“测量”是模型预测。例如,木材分类量就是这种情况,它基于锥度模型和预测的质量扣除。也有一些尝试将采伐机数据用于类似目的(Siipilehto 等人。2016;Pesonen 2017)。采伐机数据也被用作训练