sagemaker关键词检索结果

Amazon SageMaker Canvas 模型的无服务器部署

Serverless deployment for your Amazon SageMaker Canvas models

在这篇文章中,我们将介绍如何采用 SageMaker Canvas 中构建的 ML 模型并使用 SageMaker Serverless Inference 进行部署,帮助您快速高效地从模型创建到生产就绪的预测,而无需管理任何基础设施。该解决方案演示了一个完整的工作流程,从将经过训练的模型添加到 SageMaker 模型注册表,到创建无服务器端点配置,再到部署根据需求自动扩展的端点。

使用 Amazon SageMaker HyperPod 训练算子加速大规模 AI 训练

Accelerate large-scale AI training with Amazon SageMaker HyperPod training operator

在这篇文章中,我们演示了如何使用 Amazon SageMaker HyperPod 训练操作器部署和管理机器学习训练工作负载,该操作器通过精确恢复和可定制的监控功能增强 Kubernetes 工作负载的训练弹性。 Amazon SageMaker HyperPod 训练运算符通过有效管理跨大型 GPU 集群的分布式训练来帮助加速生成式 AI 模型开发,提供集中训练过程监控、精细过程恢复和挂起作业检测等优势,可将恢复时间从数十分钟缩短到几秒钟。

Splash Music 使用 AWS Trainium 和 Amazon SageMaker HyperPod 改变音乐生成方式

Splash Music transforms music generation using AWS Trainium and Amazon SageMaker HyperPod

在这篇文章中,我们展示了 Splash Music 如何通过在 Amazon SageMaker HyperPod 上结合使用其先进的 HummingLM 模型和 AWS Trainium,为 AI 驱动的音乐创作设定新标准。作为 2024 年 AWS Generative AI Accelerator 中入选的初创公司,Splash Music 与 AWS Startups 和 AWS GenAIIC 密切合作,以快速跟踪创新并加速其音乐生成 FM 开发生命周期。

使用 Almond 内核在 Amazon SageMaker Studio 中进行 Scala 开发

Scala development in Amazon SageMaker Studio with Almond kernel

本文提供了有关将 Almond 内核集成到 SageMaker Studio 的综合指南,为平台内的 Scala 开发提供了解决方案。

使用 Amazon SageMaker HyperPod 和 Anyscale 实现下一代分布式计算

Use Amazon SageMaker HyperPod and Anyscale for next-generation distributed computing

在这篇文章中,我们演示了如何将 Amazon SageMaker HyperPod 与 Anyscale 平台集成,以解决构建和部署大规模 AI 模型时的关键基础设施挑战。该组合解决方案通过高性能硬件、持续监控以及与领先的 AI 计算引擎 Ray 的无缝集成,为分布式 AI 工作负载提供强大的基础设施,使组织能够缩短上市时间并降低总体拥有成本。

负责人AI:Powerschool如何使用Amazon Sagemaker AI

Responsible AI: How PowerSchool safeguards millions of students with AI-powered content filtering using Amazon SageMaker AI

在这篇文章中,我们演示了 PowerSchool 如何使用 Amazon SageMaker AI 构建和部署自定义内容过滤解决方案,该解决方案在保持较低误报率的同时实现了更高的准确性。我们将详细介绍微调 Llama 3.1 8B 的技术方法、我们的部署架构以及内部验证的性能结果。

Amazon Sagemaker AI和Comet

Rapid ML experimentation for enterprises with Amazon SageMaker AI and Comet

在这篇文章中,我们展示了如何使用sagemaker和Comet一起旋转具有可重现性和实验跟踪功能的完全管理的ML环境。

使用Amazon SageMaker AI管理MLFLOF

Use AWS Deep Learning Containers with Amazon SageMaker AI managed MLflow

在这篇文章中,我们展示了如何将AWS DLC与MLFlow集成,以创建一个解决基础结构控制与强大ML治理的解决方案。我们将浏览您的团队可以使用的功能设置,以满足您的专业要求,同时大大减少ML生命周期管理所需的时间和资源。

使用Amazon Sagemaker Hyperpod任务治理

Schedule topology-aware workloads using Amazon SageMaker HyperPod task governance

在这篇文章中,我们通过提交代表层次网络信息的作业来介绍使用SageMaker HyperPod任务治理的拓扑感知调度。我们提供有关如何使用SageMaker HyperPod任务治理来优化您的工作效率的详细信息。