Unlocking the Power of Hugging Face for NLP Tasks
近年来,自然语言处理 (NLP) 领域取得了重大进展,这在很大程度上得益于能够理解和生成人类语言的复杂模型的发展。这场革命的关键参与者之一是 Hugging Face,这是一家开源 AI 公司,为各种 NLP 任务提供最先进的模型。Hugging Face 的 Transformers 库已成为希望实现强大 NLP 解决方案的开发人员和研究人员的首选资源。Inbound-leads-automatically-with-ai。这些模型在大量数据上进行训练,并经过微调以在特定任务上实现出色的性能。该平台还提供工具和资源,帮助用户在自己的数据集上微调这些模型,使其具有高度的通用性和用户友好性。在这
Complex & Intelligent Systems, Volume 10, Issue 4, August 2024
1) 一种用于动作识别的人体骨骼关键帧选择优化方法作者:陈浩,潘悦凯,王晨武页数:4659 - 46732) 城市轨道交通网络短期起讫点流量预测:基于多源大数据的深度学习方法作者:崔红萌,司冰峰……潘伟婷页数:4675 - 46963) 用于社区检测的多约束非负矩阵分解:正交正则稀疏约束非负矩阵分解作者:陈子刚,肖奇……李晓勇页数:4697 - 47124) 使用多层时间图神经网络预测社交媒体网络中的流行趋势作者:金瑞东,刘欣,村田刚页数:4713 - 47295) 受全变分和深度去噪先验启发的混合正则化用于图像恢复作者:Hu Liang, Jiahao Zhang...Jinbo Zhu页数
The Math Behind Multi-Head Attention in Transformers
深入探究 Transformer 和 LLM 中的秘密元素多头注意力。让我们探索它的数学原理,并从头开始用 Python 构建它DALL-E 生成的图像1:简介1.1:Transformer 概述Vaswani 等人在其论文“Attention is All You Need”中介绍的 Transformer 架构已经改变了深度学习,尤其是在自然语言处理 (NLP) 领域。Transformer 使用自注意力机制,使它们能够一次性处理所有输入序列。这种并行处理允许更快地计算并更好地管理数据中的长距离依赖关系。这听起来不熟悉?别担心,因为它会在本文的末尾出现。让我们首先简单看一下 Transfo
User Action Sequence Modeling: From Attention to Transformers and Beyond
将推荐系统 LLM 化的探索继续阅读 Towards Data Science »
自注意力和掩蔽自注意力是 Transformers 取得巨大成功的核心。然而,我们对注意力的数学理解,特别是对其 Lipschitz 属性的理解(这是分析鲁棒性和表达能力的关键)并不完整。我们在几个实际场景中对自注意力的 Lipschitz 常数进行了详细研究,讨论了序列长度和层规范化对未掩蔽和掩蔽自注意力的局部 Lipschitz 常数的影响。特别是,我们表明,对于任何紧凑的 n 的输入...
计算机视觉使机器能够解释和理解来自世界的视觉信息。这包括各种任务,例如图像分类、对象检测和语义分割。通过开发先进的神经网络架构,特别是卷积神经网络 (CNN) 和最近的 Transformers,推动了该领域的创新。这些模型已经展示了显著的效果。NVIDIA 研究人员推出 MambaVision:专为视觉应用量身定制的新型混合 Mamba-Transformer 主干首次出现在 AI Quantum Intelligence 上。
How Far Can Transformers Reason? The Locality Barrier and Inductive Scratchpad
Transformers 能否通过组合已建立的三段论来预测新的三段论?更一般地说,这些模型可以从头开始学习什么类型的目标?最近的研究表明,Transformers 在表达能力方面可以是图灵完备的,但这并没有解决可学习性目标。本文提出了分布局部性的概念,以捕捉常规 Transformers 何时可以有效实现弱学习,其中局部性除了标记直方图之外还测量与目标非平凡相关的所需最少标记数。如实验所示……
状态空间模型 (SSM) 是 Transformers 的替代品吗?Mamba-2。Chimera SSM 时间序列。Audio Mamba。Sonic SSM Gen Voice。mamba.np。OSS Qwen-2 SOTA ML。OSS LeRobot SOTA 机器人。思想缓冲区。
Speech Recognition: a review of the different deep learning approaches
探索最流行的深度学习架构以执行自动语音识别 (ASR)。从循环神经网络到卷积和 transformers。
A complete Hugging Face tutorial: how to build and train a vision transformer
通过数据集和 transformers 库的动手教程了解 Hugging Face 生态系统。探索如何微调 Vision Transformer (ViT)
Transformers, Explained: Understand the Model Behind GPT-3, BERT, and T5
你知道那句话吗?当你有一把锤子时,所有东西看起来都像钉子。在机器学习中,我们似乎真的发现了一把神奇的锤子,实际上,所有东西都是钉子,它们被称为 Transformers。Transformers 是一种可以设计用于翻译文本、写诗和专栏文章,甚至生成计算机代码的模型。事实上,我在 daleonai.com 上写的很多令人惊叹的研究都是基于 Transformers 构建的,比如 AlphaFold 2,这是一个根据蛋白质基因序列预测蛋白质结构的模型,以及强大的自然语言处理 (NLP) 模型,如 GPT-3、BERT、T5、Switch、Meena 等。你可能会说它们已经超出了……呃,算了吧。如果
How Transformers work in deep learning and NLP: an intuitive introduction
对 Transformers 及其在机器翻译中的使用方式的直观理解。在逐一分析了自注意力和位置编码等所有子组件之后,我们解释了编码器和解码器背后的原理以及 Transformers 为何如此有效
Review : Stanford's Online Artificial Intelligence Courses - Deep Learning and Machine Learning
你好!我已经入读斯坦福大学并在网上学习他们的课程。以下是我目前所学课程的一些看法。CS224n - 自然语言处理与深度学习 (Manning 教授)难度:4/5 (中等)预期内容:了解应用于 NLP 的最先进的 (SoTA) 深度学习技术。关键主题:问答文本摘要词性标记序列到序列模型Transformers为您提供了NLP发展方向的非常好的概述,家庭作业很有挑战性,但允许您实现最新的神经架构来解决各种语言问题。我的课堂项目:BertQA(github上99*颗星)- 荣获班级最佳项目奖CS231n - 用于视觉识别的卷积神经网络(Li教授和Justin Johnson)难度:4/5(中等)预期
为什么重要:标记化是自然语言处理 (NLP) 中的常见任务。它是传统 NLP 方法(如 Count Vectorizer)和基于高级深度学习的架构(如 Transformers)的基本步骤。