TensorFlow关键词检索结果

Tensorflow Extended (TFX) 实际应用:构建可用于生产的深度学习管道

Tensorflow Extended (TFX) in action: build a production ready deep learning pipeline

关于如何开始使用 Tensorflow Extended 以及如何设计和执行深度学习管道的教程

JAX vs Tensorflow vs Pytorch:构建变分自动编码器 (VAE)

JAX vs Tensorflow vs Pytorch: Building a Variational Autoencoder (VAE)

在从头开始开发和训练变分自动编码器时,对 JAX、Tensorflow 和 Pytorch 进行并排比较

使用 torch 进行简单的音频分类

Simple audio classification with torch

本文将 Daniel Falbel 关于“简单音频分类”的文章从 TensorFlow/Keras 翻译成 torch/torchaudio。

如何将 Docker 容器和 Docker Compose 用于深度学习应用程序

How to use Docker containers and Docker Compose for Deep Learning applications

了解如何使用 Docker 容器化深度学习模型。从容器背后的基本概念开始,使用 Docker 打包 Tensorflow 应用程序,并使用 Docker compose 组合多个图像

如何使用 uWSGI 和Nginx 为深度学习模型提供服务

How to use uWSGI and Nginx to serve a Deep Learning model

使用 Flask、uWSGI 作为 Web 服务器以及 Nginx 作为反向代理向用户提供 Tensorflow 模型。为什么我们同时需要 uWSGI 和 Flask,为什么我们需要在 uWSGI 之上使用 Nginx,以及一切是如何连接在一起的?

使用 Flask 和 Tensorflow 将深度学习模型部署为 Web 应用程序

Deploy a Deep Learning model as a web application using Flask and Tensorflow

如何使用 Flask 将使用 Tensorflow 构建的深度学习模型公开为 API。了解如何构建 Web 应用程序以向用户提供模型,以及如何使用 HTTP 客户端向其发送请求。

分布式深度学习训练:Tensorflow 中的模型和数据并行性

Distributed Deep Learning training: Model and Data Parallelism in Tensorflow

如何使用镜像策略、参数服务器和中央存储等分布式方法在多个 GPU 或机器中训练数据。

AutoML 解决方案概述

AutoML solutions overview

简介我一直在寻找 AutoML 解决方案的列表以及对它们进行比较的方法,但一直没能找到。所以我想我不妨编制一份清单供其他人使用。如果您不熟悉 AutoML,请阅读这篇文章以快速了解其优缺点。我还没有能够测试所有这些并做出适当的评论,所以这只是基于功能的比较。我试图挑选出我觉得最重要的功能,但它对你来说可能不是最重要的。如果您认为缺少某些功能,或者您知道应该在列表中的 AutoML 解决方案,请告诉我。在我们进入列表之前,我会快速介绍一下这些功能以及我如何解释它们。功能部署某些解决方案可以通过一键部署直接自动部署到云端。有些只是导出到 Tensorflow,有些甚至可以导出到边缘设备。类型可以是

如何从头开始在 Tensorflow 中构建自定义的可用于生产的深度学习训练循环

How to build a custom production-ready Deep Learning Training loop in Tensorflow from scratch

使用检查点和 Tensorboards 可视化在 Tensorflow 和 Python 中构建自定义训练循环

深度学习的数据预处理:使用 Tensorflow 优化数据管道的技巧和窍门

Data preprocessing for deep learning: Tips and tricks to optimize your data pipeline using Tensorflow

如何使用批处理、预取、流式传输、缓存和迭代器优化数据处理管道

使用 R 训练 ImageNet

Training ImageNet with R

这篇文章探讨了如何使用 TensorFlow 和 R 训练大型数据集。具体来说,我们介绍了如何下载和重新分区 ImageNet,然后使用 TensorFlow 和 Apache Spark 在分布式环境中跨多个 GPU 训练 ImageNet。

深度学习的数据预处理:如何构建高效的大数据管道

Data preprocessing for deep learning: How to build an efficient big data pipeline

如何使用 ETL 模式和函数式编程在 Tensorflow 中开发高性能输入管道

机器学习中的日志记录和调试 - 如何使用 Python 调试器和日志记录模块查找 AI 应用程序中的错误

Logging and Debugging in Machine Learning - How to use Python debugger and the logging module to find errors in your AI application

有关如何调试机器学习代码以及如何使用日志捕获生产中的错误的指南(包括一组有用的 Tensorflow 函数,让您的调试生活更轻松)

使用 tfprobability 的简易 PixelCNN

Easy PixelCNN with tfprobability

PixelCNN 是一种深度学习架构(或架构包),旨在生成高度逼真的图像。要使用它,无需对 arXiv 论文进行逆向工程或搜索参考实现:TensorFlow Probability 及其 R 包装器 tfprobability 现在包含一个 PixelCNN 分布,可用于以可参数化的方式训练直接定义的神经网络。

破解深度学习:通过示例进行模型反转攻击

Hacking deep learning: model inversion attack by example

与其他应用程序相比,深度学习模型似乎不太可能成为隐私攻击的受害者。但是,存在确定实体是否在训练集中使用的方法(称为成员推理的对抗性攻击),并且“模型反转”下包含的技术允许仅根据模型输出(有时是上下文信息)重建原始数据输入。这篇文章展示了模型反转的端到端示例,并探讨了使用 TensorFlow Privacy 的缓解策略。

迈向隐私:使用 Syft 和 Keras 进行加密深度学习

Towards privacy: Encrypted deep learning with Syft and Keras

深度学习与隐私保护并非不可调和。联合学习支持设备上的分布式模型训练;加密使模型和梯度更新保持私密;差分隐私可防止训练数据泄露。如今,私密且安全的深度学习是一种新兴技术。在这篇文章中,我们介绍了 Syft,这是一个与 PyTorch 和 TensorFlow 集成的开源框架。在一个示例用例中,我们从 Keras 模型中获得私密预测。

使用 tfprobability 进行高斯过程回归

Gaussian Process Regression with tfprobability

继续我们的 TensorFlow Probability (TFP) 应用之旅,在贝叶斯神经网络、汉密尔顿蒙特卡罗和状态空间模型之后,我们在这里展示了高斯过程回归的一个例子。事实上,我们看到的是一个相当“正常”的 Keras 网络,以非常常见的方式定义和训练,TFP 的变分高斯过程层发挥了所有魔力。

从 R 开始使用 Keras - 2020 版

Getting started with Keras from R - the 2020 edition

正在寻找从 R 开始深度学习的材料?这篇文章介绍了新的 TensorFlow for R 网站上的有用教程、指南和背景文档。高级用户将找到指向最近 TensorFlow 2.0 文章中提到的新版本 2.0(或即将推出的 2.1!)功能的应用程序的指针。