缓存关键词检索结果

BanditPAM:通过多臂老虎机进行几乎线性时间的 k-medoids 聚类

BanditPAM: Almost Linear-Time k-medoids Clustering via Multi-Armed Bandits

TL;DR想要比 \(k\)-means 更好的东西吗?我们最先进的 NeurIPS \(k\)-medoids 算法 BanditPAM 现已公开!\(\texttt{pip install banditpam}\),您就可以开始了!与 \(k\)-means 问题一样,\(k\)-medoids 问题是一个聚类问题,我们的目标是将数据集划分为不相交的子集。然而,在 \(k\)-medoids 中,我们要求聚类中心必须是实际数据点,这允许对聚类中心进行更好的解释。\(k\)-medoids 还可以更好地处理任意距离度量,因此如果您使用 \(L_1\) 之类的度量,您的聚类可以对异常值更具鲁棒

BanditPAM:通过多臂老虎机进行几乎线性时间的 k-medoids 聚类

BanditPAM: Almost Linear-Time k-medoids Clustering via Multi-Armed Bandits

TL;DR想要比 \(k\)-means 更好的东西吗?我们最先进的 NeurIPS \(k\)-medoids 算法 BanditPAM 现已公开!\(\texttt{pip install banditpam}\),您就可以开始了!与 \(k\)-means 问题一样,\(k\)-medoids 问题是一个聚类问题,我们的目标是将数据集划分为不相交的子集。然而,在 \(k\)-medoids 中,我们要求聚类中心必须是实际数据点,这允许对聚类中心进行更好的解释。\(k\)-medoids 还可以更好地处理任意距离度量,因此如果您使用 \(L_1\) 之类的度量,您的聚类对异常值会更稳健。尽

深度学习的数据预处理:使用 Tensorflow 优化数据管道的技巧和窍门

Data preprocessing for deep learning: Tips and tricks to optimize your data pipeline using Tensorflow

如何使用批处理、预取、流式传输、缓存和迭代器优化数据处理管道

编辑 CRLAutoCache 源位置

Editing CRLAutoCache Source Locations

编辑 CRLAutoCache 源位置 本快速参考指南 (QRG) 介绍如何编辑 CRLAutoCache for Windows 用于获取和缓存 CRL 的源位置和 DNLookupTable URL。