Torch关键词检索结果

torch 0.9.0

torch 0.9.0

torch v0.9.0 现已在 CRAN 上发布。此版本增加了对运行 macOS 的 ARM 系统的支持,并带来了显着的性能改进。

离散傅里叶变换 - 使用 torch

Discrete Fourier Transform - with torch

关于傅里叶变换,有人说它是宇宙中最伟大的奇迹之一。同时,它仅用六行代码即可实现。即使最后你只是直接调用 torch 的内置函数,它也有助于理解并能够在代码中重现魔法背后的想法。这篇文章摘自即将由 CRC Press 出版的新书《使用 R torch 进行深度学习和科学计算》。

五种最小二乘法(使用 torch)

Five ways to do least squares (with torch)

了解 torch 的 linalg 模块,同时学习从头开始进行最小二乘回归的不同方法。这篇文章是即将由 CRC Press 出版的《深度学习和科学计算与 R torch》一书中相应章节的精简版。

使用 torch 进行音频分类

Audio classification with torch

学习如何使用 torch 对语音进行分类,利用领域知识和深度学习。这篇文章是即将由 CRC Press 出版的《使用 R torch 进行深度学习和科学计算》一书中相应章节的精简版。

luz 0.3.0

luz 0.3.0

luz 版本 0.3.0 现已在 CRAN 上发布。luz 是 torch 的高级接口。

社区焦点:使用 torchopt 的乐趣

Community spotlight: Fun with torchopt

今天,我们想提请大家注意 torch 生态系统中一个非常有用的包:torchopt。它通过提供一组基础库中没有的流行优化算法来扩展 torch。正如这篇文章将展示的那样,它也很有趣!

BYOL 教程:使用 Pytorch 中的代码对 CIFAR 图像进行自监督学习

BYOL tutorial: self-supervised learning on CIFAR images with code in Pytorch

实现和理解 byol,一种没有负样本的自监督计算机视觉方法。了解 BYOL 如何学习用于图像分类的稳健表示。

torch 开箱即用

torch outside the box

有时,软件的最佳功能是您自己添加的功能。这篇文章通过示例说明了为什么您可能想要扩展 torch,以及如何进行。它还解释了后台发生的一些事情。

Pytorch 中的分布式训练的工作原理:分布式数据并行和混合精度训练

How distributed training works in Pytorch: distributed data-parallel and mixed-precision training

了解分布式训练在 pytorch 中的工作原理:数据并行、分布式数据并行和自动混合精度。以巨大的速度训练您的深度学习模型。

自监督学习教程:使用 pytorch lightning 实现 SimCLR

Self-supervised learning tutorial: Implementing SimCLR with pytorch lightning

了解如何实现臭名昭著的对比自监督学习方法 SimCLR。在 PyTorch 和 PyTorch-lightning 中逐步实现

Isaac Gym:用于机器人学习的高性能基于 GPU 的物理模拟

Isaac Gym: High Performance GPU-Based Physics Simulation For Robot Learning

Isaac Gym 提供了一个高性能学习平台,可直接在 GPU 上训练各种机器人任务的策略。物理模拟和神经网络策略训练都驻留在 GPU 上,并通过直接将数据从物理缓冲区传递到 PyTorch 张量进行通信,而无需经历任何 CPU 瓶颈。这使得在单个 GPU 上进行复杂机器人任务的训练时间极快,与使用基于 CPU 的模拟器和 GPU 进行神经网络的传统 RL 训练相比,速度提高了 2-3 个数量级。

在 R 中训练,在 Android 上运行:使用 torch 进行图像分割

Train in R, run on Android: Image segmentation with torch

我们使用 torch 及其高级接口 luz 在 R 中训练一个图像分割模型。然后,我们在示例输入上对模型进行 JIT 跟踪,以获得可以在没有安装 R 的情况下运行的优化表示。最后,我们展示了在 Android 上运行的模型。

labml.ai 深度学习论文实现

labml.ai Deep Learning Paper Implementations

这是神经网络和相关算法的简单 PyTorch 实现的集合。这些实现都附有说明,网站将这些说明呈现为并排格式的注释。我们相信这些将有助于您理解这些算法更好。

torch:用于无 R 模型部署的即时编译 (JIT)

torch: Just-in-time compilation (JIT) for R-less model deployment

使用 torch 即时 (JIT) 编译器,可以使用另一种语言查询用 R 训练的模型,前提是该语言可以使用低级 libtorch 库。这篇文章展示了如何做到这一点。此外,我们试图理清围绕该主题的一些术语混乱。

Que haja luz:为 torch 点亮更多光芒!

Que haja luz: More light for torch!

今天,我们介绍 luz,它是 torch 的高级接口,可让您以简洁、声明式的风格训练神经网络。从某种意义上说,它之于 torch 就像 Keras 之于 TensorFlow:它既提供了简化的工作流程,也提供了强大的自定义方式。

torch 用于优化

torch for optimization

Torch 不仅仅适用于深度学习。其 L-BFGS 优化器配备 Strong-Wolfe 线搜索,是无约束和约束优化的强大工具。

图神经网络 (GNN) 的工作原理:从头开始介绍图卷积

How Graph Neural Networks (GNN) work: introduction to graph convolutions from scratch

从零开始使用图神经网络,并在 Pytorch 中实现图卷积层

JAX vs Tensorflow vs Pytorch:构建变分自动编码器 (VAE)

JAX vs Tensorflow vs Pytorch: Building a Variational Autoencoder (VAE)

在从头开始开发和训练变分自动编码器时,对 JAX、Tensorflow 和 Pytorch 进行并排比较