使用 torch,几乎没有理由从头开始编写反向传播代码。它的自动微分功能称为 autograd,可跟踪需要计算梯度的操作以及如何计算它们。在这个由四部分组成的系列的第二篇文章中,我们更新了简单的手工编码网络以使用 autograd。
Getting familiar with torch tensors
在这个由四部分组成的迷你系列的第一部分中,我们介绍了您想要了解的有关 torch 张量的主要内容。作为一个说明性示例,我们将从头开始编写一个简单的神经网络。
Recurrent Neural Networks: building GRU cells VS LSTM cells in Pytorch
RNN 相对于 transformer 有哪些优势?何时使用 GRU 而不是 LSTM?GRU 的方程式到底是什么意思?如何在 Pytorch 中构建 GRU 单元?
Towards privacy: Encrypted deep learning with Syft and Keras
深度学习与隐私保护并非不可调和。联合学习支持设备上的分布式模型训练;加密使模型和梯度更新保持私密;差分隐私可防止训练数据泄露。如今,私密且安全的深度学习是一种新兴技术。在这篇文章中,我们介绍了 Syft,这是一个与 PyTorch 和 TensorFlow 集成的开源框架。在一个示例用例中,我们从 Keras 模型中获得私密预测。
[Google Cloud] Setup Instructions for FastAI 2018 Deep Learning Course - Open source library
在我之前的博客文章之后,我在线观看了 Jeremy Howard 的 FastAI 深度学习讲座。这是 2018 年深度学习版课程的链接 - 它完全免费,并且通过“实践”深入概念细节,提供了对实用深度学习的深刻见解。该课程的 FastAI 库是在 Pytorch 之上构建的,并提供了一个很好的顶级 API,可在几分钟内开始创建您的深度学习模型!设置库很困难,因为它依赖于不同的软件包版本,并且由于更新构建它的软件包而导致损坏。我将列出我为启动和运行它而遵循的设置。1. 按照 Medium.com 上的指南在 Google Cloud 上设置 Google 计算单元2. 我遇到的问题是 curl