Random Forest, Explained: A Visual Guide with Code Examples
集成学习使用随机树进行复杂的预测决策树分类器说明:带有代码示例的可视化指南,适合初学者决策树是机器学习的一个很好的起点 — — 它们清晰且有意义。但有一个问题:它们在处理新数据时往往效果不佳。预测可能不一致且不可靠,这在您尝试构建有用的东西时是一个真正的问题。这就是随机森林的用武之地。它吸收了决策树的优点,并通过将多棵树组合在一起使它们更好地工作。它已成为许多数据科学家最喜欢的工具,因为它既有效又实用。让我们看看随机森林是如何工作的,以及为什么它可能正是您下一个项目所需要的。现在是时候停止迷失在树木中,看看森林的真面目了 — — 这是您在机器学习中的下一个可靠工具。所有视觉效果:作者使用 Ca