模型改进关键词检索结果

Kaleido 扩散:使用自回归潜在模型改进条件扩散模型

Kaleido Diffusion: Improving Conditional Diffusion Models with Autoregressive Latent Modeling

扩散模型已成为从文本描述生成高质量图像的强大工具。尽管这些模型取得了成功,但它们在采样图像中通常表现出有限的多样性,尤其是在使用高无分类器指导权重进行采样时。为了解决这个问题,我们提出了 Kaleido,这是一种通过结合自回归潜在先验来增强样本多样性的新方法。Kaleido 集成了一个自回归语言模型,该模型对原始标题进行编码并生成潜在变量,作为抽象和中间表示……

研究人员使用大型语言模型改进移动机器人导航

Исследователи улучшили навигацию мобильных роботов с помощью больших языковых моделей

开发的系统使用语言指令指导机器人,减少对大量视觉数据的需求。

AI在DeepSeek中看到的未来 - 近年来AI演变背后的背景

DeepSeekに見るAIの未来 -近年のAI進化の背景とは

■总结,人们注意到,由中国初创公司DeepSeek开发的AI模型(开发AI)是低成本,但在基准测试中得分等于CHATGPT。发电机AI模型的开发可以扩展到广泛的公司和开发人员,因为它由美国主要科技公司主导。此外,人们相信,将AI应用于机器人将导致以前仅限于数字空间的AI的传播,将来将其传播到现实世界中。随着AI的发展,有必要采取积极利用它的态度。 ■目录1- DeepSeek的影响2- DeepSeek Model 3的特征 - AI模型4的不连续演变 - AI应用程序领域的扩展5-结论中国初创公司DeepSeek开发的AI模型,中国初创公司,这是一家AI,它发展了AI,尽管它低成本,但它