离散化关键词检索结果

离散化解释:初学者的带有代码示例的可视化指南

Discretization, Explained: A Visual Guide with Code Examples for Beginners

数据预处理将数字分类到箱中的 6 种有趣方法!⛳️ 更多数据预处理说明:· 缺失值插补 · 分类编码 · 数据缩放 ▶ 离散化 · 过度和欠采样(即将推出!)大多数机器学习模型都要求数据为数值——所有对象或分类数据必须首先采用数字格式。但实际上,有时分类数据会派上用场(大多数时候,它对我们人类比对机器更有用)。离散化(或分箱)就是这样做的——将数值数据转换为分类数据!根据您的目标,有多种方法可以对数据进行分类。在这里,我们将使用一个简单的数据集来展示六种不同的分箱方法。从等宽到基于聚类的方法,我们将这些数值扫入一些分类箱中!所有视觉效果:作者使用 Canva Pro 创建。针对移动设备进行了优

过采样和欠采样解释:带有迷你 2D 数据集的可视化指南

Oversampling and Undersampling, Explained: A Visual Guide with Mini 2D Dataset

数据预处理人工生成和删除数据,以造福大众⛳️ 更多数据预处理,解释:· 缺失值插补 · 分类编码 · 数据缩放 · 离散化 ▶ 过采样和欠采样收集每个类别都有完全相同数量的类别需要预测的数据集可能是一个挑战。实际上,事情很少能完美平衡,当你制作分类模型时,这可能是一个问题。当一个模型在这样的数据集上训练时,一个类别比另一个类别有更多的示例,它通常会变得更擅长预测较大的组,而更不擅长预测较小的组。为了解决这个问题,我们可以使用过采样和欠采样等策略——为较小的组创建更多示例或从较大的组中删除一些示例。目前有许多不同的过采样和欠采样方法(名字吓人,如 SMOTE、ADASYN 和 Tomek Lin