Balancing cost and performance: Agentic AI development
最高管理层喜欢代理人工智能的承诺:无需持续人工干预即可思考、决策和行动的自主系统。生产力和降低成本的潜力是不可否认的——直到账单开始滚滚而来。如果你的“策略”是先发货,然后再计算成本,那么你就不是在构建代理人工智能。你正在融资......平衡成本和性能:Agentic AI 开发一文首先出现在 DataRobot 上。
AdaBoN: Adaptive Best-of-N Alignment
测试时间对齐方法的最新进展(例如 Best-of-N 采样)提供了一种简单而有效的方法,可以使用奖励模型 (RM) 引导语言模型 (LM) 转向首选行为。然而,这些方法的计算成本可能很高,尤其是在跨提示统一应用而不考虑对齐难度差异的情况下。在这项工作中,我们提出了一种 Best-of-N 对齐的提示自适应策略,可以更有效地分配推理时间计算。出于延迟问题的动机,我们开发了一种两阶段算法:初始探索阶段估计……