Sagemaker关键词检索结果

与Amazon Sagemaker AI

Automate advanced agentic RAG pipeline with Amazon SageMaker AI

在这篇文章中,我们介绍了如何简化您的破布开发生命周期从实验到自动化,从而帮助您通过Amazon Sagemaker AI来运行RAG解决方案,以帮助您的团队有效地实验,有效地协作并驱动持续改进。

TII Falcon-H1型号现在在亚马逊基岩市场和Amazon Sagemaker Jumpstart

TII Falcon-H1 models now available on Amazon Bedrock Marketplace and Amazon SageMaker JumpStart

我们很高兴地宣布,在亚马逊基岩市场和亚马逊萨金人的Amazon Sagemaker Jumpstart上,技术创新研究所(TII)的Falcon-H1车型的可用性。通过此次发布,开发人员和数据科学家现在可以在AWS上使用六种指令调节的Falcon-H1型号(0.5b,1.5b,1.5b,1.5b,3b,7b和34b),并可以访问一系列混合体系结构,这些模型将传统注意力机制与州空间模型(SSMS)相结合,以提供具有非精致效率的效率。

在Amazon Sagemaker Hyperpod

Accelerate your model training with managed tiered checkpointing on Amazon SageMaker HyperPod

AWS宣布在亚马逊Sagemaker Hyperpod中宣布了托管分层的检查点,这是一种专门建立的基础架构,可扩展和加速成千上万个AI加速器的生成AI模型开发。托管分层检查点使用CPU内存进行高性能检查点存储,并在相邻计算节点上自动数据复制,以增强可靠性。在这篇文章中,我们深入研究了这些概念,并了解如何使用托管分层检查点功能。

宣布Amazon Sagemaker HyperPod的新群集创建体验

Announcing the new cluster creation experience for Amazon SageMaker HyperPod

借助新的群集创建体验,您可以单击一键创建SageMaker HyperPod群集,包括所需的先决条件AWS资源,并自动使用规定默认值。在这篇文章中,我们探索了亚马逊萨吉式制造商Hyperpod的新集群创建体验。

在Amazon Sagemaker Hyperpod上引入自动缩放

Introducing auto scaling on Amazon SageMaker HyperPod

在这篇文章中,我们宣布,亚马逊萨吉式超级平台现在支持karpenter的托管节点自动扩展,从而使SageMaker HyperPod簇的有效缩放能够满足推理和培训需求。我们深入研究Karpenter的好处,并提供有关在Sagemaker HyperPod EKS群集中启用和配置Karpenter的详细信息。

Inception Labs的Mercury Foundation Models现在可以在Amazon Bedrock Marketplace和Amazon Sagemaker Jumpstart

Mercury foundation models from Inception Labs are now available in Amazon Bedrock Marketplace and Amazon SageMaker JumpStart

在这篇文章中,我们宣布,Inception Labs的Mercury和Mercury Coder基金会模型现在可以通过Amazon Bedrock Marketplace和Amazon Sagemaker Jumpstart获得。我们演示了如何部署这些基于超快速扩散的语言模型,这些模型可以在NVIDIA H100 GPU上每秒生成1,100个令牌,并在代码生成和工具使用方案中展示其功能。

Amazon Sagemaker HyperPod增强了具有可伸缩性和可定制性

Amazon SageMaker HyperPod enhances ML infrastructure with scalability and customizability

在这篇文章中,我们在SageMaker Hyperpod中介绍了三个功能,可提高ML基础架构的可扩展性和可定制性。连续供应提供灵活的资源供应,以帮助您更快地开始培训和部署模型,并更有效地管理群集。使用自定义AMIS,您可以将ML环境与组织安全标准和软件要求保持一致。

使用Amazon Sagemaker Hyperpod食谱进行微调Openai GPT-oss型号

Fine-tune OpenAI GPT-OSS models using Amazon SageMaker HyperPod recipes

这篇文章是GPT-oss系列的第二部分,专注于Amazon Sagemaker AI的模型定制。在第1部分中,我们使用带有Sagemaker培训工作的开源拥抱面部库进行了微调的GPT-oss模型,该培训工作支持分布式的多GPU和多节点配置,因此您可以按需旋转高性能群集。在这篇文章中,[…]

使用Amazon Sagemaker Unified Studio

Speed up delivery of ML workloads using Code Editor in Amazon SageMaker Unified Studio

在这篇文章中,我们介绍了如何在Sagemaker Unified Studio中使用新的代码编辑器和多个空格支持。示例解决方案显示了如何开发ML管道,该管道可以自动化典型的端到端ML活动以构建,训练,评估和(选择)部署ML模型。

用Amazon Sagemaker Hyperpod支持P6E-GB200 Ultraservers

Train and deploy AI models at trillion-parameter scale with Amazon SageMaker HyperPod support for P6e-GB200 UltraServers

在这篇文章中,我们回顾了P6E-GB200 Ultraservers的技术规格,讨论其性能优势,并突出关键用例。然后,我们走过如何通过灵活的培训计划购买超声处理能力,并开始使用带有Sagemaker Hyperpod的Ultraservers。

与Amazon Sagemaker Unified Studio Projects自动化AIOPS,第1部分:解决方案体系结构

Automate AIOps with Amazon SageMaker Unified Studio projects, Part 1: Solution architecture

这篇文章介绍了建筑策略和可扩展的框架,该框架可帮助组织管理多租户环境,始终如一地自动化自动化,并嵌入治理控制,因为它们可以与Sagemaker Unified Studio扩展AI计划。

Amazon Sagemaker AI上使用拥抱面库

Fine-tune OpenAI GPT-OSS models on Amazon SageMaker AI using Hugging Face libraries

于2025年8月5日发布,OpenAI的GPT-Oss车型GPT-OSS-20B和GPT-OSS-1220B现在可以通过AWS通过Amazon Sagemaker AI和Amazon Bedrock在AWS上购买。在这篇文章中,我们介绍了使用SageMaker AI培训工作在完全管理的培训环境中微调GPT-oss模型的过程。

使用Amazon Bedrock Data Automation和Amazon Sagemaker AI

Process multi-page documents with human review using Amazon Bedrock Data Automation and Amazon SageMaker AI

在这篇文章中,我们将使用Amazon Bedrock Data Automation和Amazon Sagemaker AI展示如何使用人类评论循环处理多页文档。

MISTRAL-SMALL-3.2-24B-INSTRUCT-2506现在可以在Amazon Bedrock Marketplace和Amazon Sagemaker Jumpstart

Mistral-Small-3.2-24B-Instruct-2506 is now available on Amazon Bedrock Marketplace and Amazon SageMaker JumpStart

今天,我们很高兴地宣布,Mistral-Small-3.2-24B-Instruct-2506 - Mistral AI的240亿参数大语言模型(LLM),该模型(LLM)已优化,可通过Amazon Sagemaker Jumpstart和Amazon Bedrock Market Place,可用于增强跟随和减少的重复错误,并减少重复错误。亚马逊基岩市场是亚马逊基岩的一种能力,开发人员可以用来发现,测试和使用[…]

在Amazon Sagemaker上使用Amazon Nova LLM-AS-A-A-A-As-As-A-A-ai

Evaluating generative AI models with Amazon Nova LLM-as-a-Judge on Amazon SageMaker AI

评估大语言模型(LLM)的性能超出了统计指标,例如困惑或双语评估研究(BLEU)得分。对于大多数真实世界的生成AI方案,重要的是要了解模型是否比基线或更早的迭代产生更好的输出。这对于诸如摘要,内容生成,[…]

使用Amazon S3矢量建立企业规模的抹布应用程序和Amazon Sagemaker上的DeepSeek R1

Building enterprise-scale RAG applications with Amazon S3 Vectors and DeepSeek R1 on Amazon SageMaker AI

组织正在采用大型语言模型(LLM),例如DeepSeek R1,以改变业务流程,增强客户体验并以前所未有的速度推动创新。但是,独立的LLM具有关键的局限性,例如幻觉,过时的知识和无法获得专有数据的访问。检索增强发电(RAG)通过将语义搜索与生成AI相结合,[…]

Rapid7如何使用Amazon Sagemaker AI

How Rapid7 automates vulnerability risk scores with ML pipelines using Amazon SageMaker AI

在这篇文章中,我们分享了Rapid7如何实施端到端自动化,以用于预测CVSS向量的ML模型的培训,验证和部署。 Rapid7客户拥有所需的信息,以准确了解其风险并确定补救措施。

Amazon Sagemaker上的高级微调方法AI

Advanced fine-tuning methods on Amazon SageMaker AI

在AWS上微调ML模型时,您可以为您的特定需求选择合适的工具。 AWS为数据科学家,ML工程师和业务用户提供了一系列全面的工具,以实现其ML目标。 AWS建立了支持各种ML复杂性的解决方案,从简单的Sagemaker培训工作进行FM微调到萨吉马制造商Hyperpod的力量进行尖端研究。我们邀请您探索这些选项,从适合您当前需求的内容开始,并随着这些需求的变化而发展您的方法。