tensor关键词检索结果

Barry Silbert 投资 AI 区块链 Bittensor

Barry Silbert Invests in AI Blockchain Bittensor

重要性:Barry Silbert 投资 Bittensor,将区块链和人工智能相结合,推动创新和去中心化。

safetensors 0.1.0

safetensors 0.1.0

宣布推出 safetensors,这是一个新的 R 包,允许以 safetensors 格式读取和写入文件。

使用αEnphatensor发现新算法

Discovering novel algorithms with AlphaTensor

在我们的论文中,今天在自然界发表,我们介绍了Alphatensor,这是第一个人工智能(AI)系统,用于发现用于基本任务(例如矩阵乘法)的新颖,有效且可证明的正确算法。这阐明了一个50年历史的数学开放式问题,即找到最快的方法来繁殖两个矩阵。本文是DeepMind的使命,旨在推进科学并使用AI解锁最根本的问题。我们的系统Alphatensor建立在Alphazero的基础上,Alphazero是一位在棋盘游戏中显示超人性能的经纪人,例如国际象棋,GO和Shogi,这项工作显示了Alphazero从玩游戏到第一次解决未解决的数学问题的旅程。

使用αEnphatensor发现新算法

Discovering novel algorithms with AlphaTensor

在我们的论文中,今天在自然界发表,我们介绍了Alphatensor,这是第一个人工智能(AI)系统,用于发现用于基本任务(例如矩阵乘法)的新颖,有效且可证明的正确算法。这阐明了一个50年历史的数学开放式问题,即找到最快的方法来繁殖两个矩阵。本文是DeepMind的使命,旨在推进科学并使用AI解锁最根本的问题。我们的系统Alphatensor建立在Alphazero的基础上,Alphazero是一位在棋盘游戏中显示超人性能的经纪人,例如国际象棋,GO和Shogi,这项工作显示了Alphazero从玩游戏到第一次解决未解决的数学问题的旅程。

使用αEnphatensor发现新算法

Discovering novel algorithms with AlphaTensor

在我们的论文中,今天在自然界发表,我们介绍了Alphatensor,这是第一个人工智能(AI)系统,用于发现用于基本任务(例如矩阵乘法)的新颖,有效且可证明的正确算法。这阐明了一个50年历史的数学开放式问题,即找到最快的方法来繁殖两个矩阵。本文是DeepMind的使命,旨在推进科学并使用AI解锁最根本的问题。我们的系统Alphatensor建立在Alphazero的基础上,Alphazero是一位在棋盘游戏中显示超人性能的经纪人,例如国际象棋,GO和Shogi,这项工作显示了Alphazero从玩游戏到第一次解决未解决的数学问题的旅程。

使用αEnphatensor发现新算法

Discovering novel algorithms with AlphaTensor

在我们的论文中,今天在自然界发表,我们介绍了Alphatensor,这是第一个人工智能(AI)系统,用于发现用于基本任务(例如矩阵乘法)的新颖,有效且可证明的正确算法。这阐明了一个50年历史的数学开放式问题,即找到最快的方法来繁殖两个矩阵。本文是DeepMind的使命,旨在推进科学并使用AI解锁最根本的问题。我们的系统Alphatensor建立在Alphazero的基础上,Alphazero是一位在棋盘游戏中显示超人性能的经纪人,例如国际象棋,GO和Shogi,这项工作显示了Alphazero从玩游戏到第一次解决未解决的数学问题的旅程。

Tescan通过高级电子显微镜在不列颠哥伦比亚大学加强研究能力

TESCAN Strengthens Research Capabilities at The University of British Columbia with Advanced Electron Microscopes

Tescan Group是电子显微镜和高级科学仪器的全球制造商,宣布与不列颠哥伦比亚大学(UBC)进行新的合作。 UBC与Tescan USA的合作关系将为研究人员提供尖端的Mira,Tensor和Amber Electron显微镜,将世界一流的研究和创新技术融合在一起,以推动显微镜和材料特征的创新...

BitFlow Fiber-over-CoaXPress 图像采集卡与 NVIDIA TensorRT 集成,用于实时人体姿势估计

BitFlow Fiber-over-CoaXPress Frame Grabber Integrated with NVIDIA TensorRT in Real-time Human Pose Estimation

作为同类产品中最先进的系统之一,姿势估计系统可以提供运动、游戏、物理治疗、AR/VR、跌倒检测和在线指导的低延迟分析。

TESCAN 集团在坦佩开设示范实验室

TESCAN Group opens Demonstration Lab in Tempe

TESCAN 集团重新开放了其现有的坦佩研发设施,并增加了一个展示 TESCAN 最新电子显微镜技术的实验室。该实验室配备了 TESCAN TENSOR STEM 和新推出的 Solaris 2 FIB-SEM,为客户提供动手演示和材料科学与半导体研发、故障分析和过程监控等领域的专业支持……

预测能力得分:计算、优点、缺点和 JavaScript 代码

Predictive Power Score: Calculation, Pros, Cons, and JavaScript Code

该项目旨在了解一般相关性,并使用 Brain.js 和 Tensorflow.js 在 Web 浏览器中测试神经网络继续阅读 Towards Data Science »

微软推出搭载 NVIDIA Tensor Core GPU 的 Azure 机密虚拟机,以增强安全工作负载

Microsoft Launches Azure Confidential VMs with NVIDIA Tensor Core GPUs for Enhanced Secure Workloads

微软 Azure 推出了 NCC H100 v5 虚拟机,现在配备了 NVIDIA Tensor Core GPU,可增强高性能工作负载的安全计算。这些虚拟机利用 AMD EPYC 处理器提供强大的数据保护,使其成为 AI 模型训练和推理等任务的理想选择,同时确保敏感应用程序的可信执行环境。作者:Steef-Jan Wiggers

微型神经网络如何表示基本函数

How Tiny Neural Networks Represent Basic Functions

通过简单的算法示例对机械可解释性进行简单介绍简介本文展示了小型人工神经网络 (NN) 如何表示基本功能。目标是提供有关 NN 工作原理的基本直觉,并作为机械可解释性的简单介绍——该领域旨在对 NN 进行逆向工程。我提供了三个基本函数的示例,使用简单的算法描述了每个函数,并展示了如何将算法“编码”到神经网络的权重中。然后,我探索网络是否可以使用反向传播来学习算法。我鼓励读者将每个示例视为一个谜语,并在阅读解决方案之前花一点时间。机器学习拓扑本文尝试将 NN 分解为离散操作并将其描述为算法。另一种方法可能更常见、更自然,即研究不同层中线性变换的连续拓扑解释。以下是一些有助于增强拓扑直觉的优秀资源:

如何在行业中成为一名成功的机器学习工程师

How to Succeed as a Machine Learning Engineer in the Industry

5 条帮助我在 BigTech 不断超越期望的提示您是否想过要成为一名成功的机器学习工程师需要什么?您是否很难确定自己在这个充满活力的领域中的角色?我也有过这样的经历!嗨!我是 Kartik Singhal,Meta 的高级机器学习工程师。凭借在该领域的六年经验,我仍然发现自己每天都在学习。今天,我将分享五条秘诀,这些秘诀帮助我在 BigTech 担任高级机器学习工程师期间获得了“超出预期”的评级。💻 构建基础图片作者,来自 ChatGPT 4o 您需要很好地理解机器学习基础知识,并意识到其在实际应用中的局限性。了解核心概念:掌握监督学习与无监督学习、分类与回归的基础知识,以及深度学习的基础知

在 TensorFlow(和 PyTorch)中实现神经网络

Implementing Neural Networks in TensorFlow (and PyTorch)

构建神经网络的分步代码指南继续阅读 Towards Data Science »

在 TensorFlow(和 PyTorch)中实现神经网络 | 作者:Shreya Rao | 2024 年 7 月

Implementing Neural Networks in TensorFlow (and PyTorch) | by Shreya Rao | Jul, 2024

构建神经网络的分步代码指南欢迎阅读我们的深度学习图解系列的实用实施指南。在本系列中,我们将弥合理论与应用之间的差距,将之前文章中探讨的神经网络概念变为现实。深度学习,图解还记得我们讨论过的用于预测冰的简单神经网络吗?帖子在 TensorFlow(和 PyTorch)中实现神经网络 | 作者 Shreya Rao | 2024 年 7 月首次出现在 AI Quantum Intelligence 上。

在 TensorFlow(和 PyTorch)中实现神经网络 | 作者:Shreya Rao | 2024 年 7 月

Implementing Neural Networks in TensorFlow (and PyTorch) | by Shreya Rao | Jul, 2024

构建神经网络的分步代码指南欢迎来到我们的深度学习图解系列的实用实施指南。在本系列中,我们将弥合理论与应用之间的差距,将之前文章中探讨的神经网络概念变为现实。深度学习,图解还记得我们讨论过的用于预测冰的简单神经网络吗?帖子在 TensorFlow(和 PyTorch)中实现神经网络 | 作者 Shreya Rao | 2024 年 7 月首先出现在 AI Quantum Intelligence 上。

TensorFlow Transform:确保生产中的无缝数据准备

TensorFlow Transform: Ensuring Seamless Data Preparation in Production

利用 TensorFlow Transform 扩展用于生产环境的数据管道照片由 Suzanne D. Williams 在 Unsplash 上拍摄数据预处理是任何机器学习管道的主要步骤之一。Tensorflow Transform 可帮助我们在分布式环境中通过庞大的数据集实现它。在进一步介绍数据转换之前,数据验证是生产管道流程的第一步,这已在我的文章《在生产管道中验证数据:TFX 方式》中介绍过。请阅读本文以更好地理解本文。我已在此演示中使用 Colab,因为配置环境更容易(也更快)。如果您处于探索阶段,我也会推荐 Colab,因为它可以帮助您专注于更重要的事情。ML 管道操作从数据提取和

TensorFlow — 软件工程的范围

TensorFlow — The Scope of Software Engineering

如何像软件工程师一样构建 TensorFlow 图。