接触依赖性生长抑制 (CDI) 是一种由 CdiA 效应蛋白介导的广泛存在的细菌间竞争形式。CdiA 存在于抑制剂细胞表面,并在接触时将其有毒的 C 末端区域 (CdiA-CT) 传递到邻近的细菌中。抑制剂细胞还会产生 CdiI 免疫蛋白,这些蛋白可中和 CdiA-CT 毒素以防止自我抑制。在这里,我们描述了一组不同的 CDI 离子载体毒素,它们会消散目标细菌中的跨膜电位。这些 CdiA-CT 毒素由基于 AlphaFold2 建模的两个不同域组成。C 末端离子载体域都预测会形成能够跨越细胞膜的五螺旋束。N 末端“进入”域的结构各不相同,似乎劫持了不同的整合膜蛋白,以促进毒素组装到脂质双层中。大肠杆菌分离株部署的 CDI 离子载体根据其进入域结构分为六大类。比较序列分析鉴定出第 1 组和第 3 组(AcrB)、第 2 组(SecY)和第 4 组(YciB)的离子载体毒素受体蛋白。利用正向遗传学方法,我们鉴定出第 5 组和第 6 组离子载体的新受体。第 5 组利用由 puuP 和 plaP 编码的同源腐胺输入蛋白,第 6 组毒素识别由旁系同源 dtpA 和 dtpB 基因编码的二肽/三肽转运蛋白。最后,我们发现离子载体结构域表现出显著的组内序列变异,特别是在预测与 CdiI 相互作用的位置。因此,相应的免疫蛋白也具有高度多态性,通常与同一组的成员仅共享约 30% 的序列同一性。竞争实验证实,免疫蛋白对其同源离子载体具有特异性,无法抵御来自同一组的其他毒素。这种蛋白质相互作用网络的特异性为大肠杆菌分离株之间的自体/非自体识别提供了一种机制。
尽管对形态学、分子学和组合数据集进行了多次分析,但鱿鱼和乌贼(头足纲:十足目)之间的系统发育关系几十年来一直难以明确。最近,对完整线粒体基因组和数百个核基因座的分析也得出了类似的模棱两可的结果。在本研究中,我们通过增加分类学广度和利用几个分类群的更高质量的基因组和转录组数据,重新评估十足目关系的假设。我们还采用分析方法来 (1) 识别转录组数据中的污染,(2) 更好地评估模型的充分性,以及 (3) 考虑潜在的偏差。使用这个更大的数据集,我们一致地恢复了一个由 Myopsida(闭眼鱿鱼)、Sepiida(乌贼)和 Oegopsida(睁眼鱿鱼)组成的演化支,它是 Sepiolida(短尾和瓶尾鱿鱼)演化支的姐妹。 Idiosepiida(小鱿鱼)一直被认为是所有采样的十足目谱系的姊妹群。此外,将加权的 Shimodaira-Hasegawa 检验应用于我们的一个较大的数据矩阵,拒绝了这些序数级关系的所有替代方案。目前,可用的核基因组规模数据支持体型相对较大的十足目头足类的嵌套进化枝,但小鱿鱼除外,但需要改进分类单元采样和额外的基因组数据来严格测试这些新假设。