威尔士将于 2025 年 6 月 1 日禁止供应一次性电子烟,这将与英格兰、苏格兰和北爱尔兰于 2025 年出台的禁令保持一致。一次性电子烟电子烟是一种电池供电的设备,可加热液体(通常为尼古丁,但也有不含尼古丁的液体)以产生可吸入的气雾。电子烟以可重复使用和一次性两种形式出售,后者被归类为既不可充电也不可再填充,在电量耗尽或电子液体耗尽后就会被丢弃。一次性电子烟通常已填充 2 毫升电子液体(约 600 口)和最多 2% 的尼古丁。我们的立法只禁止一次性电子烟,包括尼古丁和不含尼古丁两种版本。可重复使用的电子烟将继续可用。我们出台立法是为了解决大量生产和不当处置一次性电子烟所带来的环境问题。 主要目标 - 解决环境问题 一次性电子烟越来越受欢迎,尤其是在年轻人中,这导致产生的废物量和制造这些产品所用的资源大幅增加。 随后,人们越来越担心它们对环境的影响。 2023 年,Material Focus 的研究估计,英国每周有超过 500 万支一次性电子烟被乱扔或被扔进一般垃圾中,几乎是前一年数量的四倍。 只有 17% 的受访者表示他们会回收利用自己的电子烟。 一次性电子烟被乱扔时,会将塑料、尼古丁盐、重金属、铅、汞和易燃锂离子电池带入自然环境。 这些化学物质最终会污染水道和土壤,还会对野生动物产生毒性和破坏性。 乱扔的塑料外壳会磨成有害的微塑料。保持威尔士整洁 (KWT) 开展的调查发现,我们环境中一次性电子烟的数量急剧上升。2023/24 年间,威尔士 10.2% 的街道上发现了一次性电子烟,估计我们的街道上一次散落的电子烟数量高达 6700 支。
理论密码学的核心原则是研究实现给定密码原语所需的最小假设。Goldwasser、Kalai 和 Rothblum [CRYPTO 2008] 引入的一次性存储器 (OTM) 就是这样一种原语,它是一种经典功能,以非交互式 1-out-of-2 不经意传输为模型,并且对于一次性经典和量子程序而言都是完整的。众所周知,在经典和量子设置的标准模型中,安全的 OTM 都不存在。在这里,我们提出了一种使用量子信息以及无状态(即可重复使用)硬件令牌假设来构建统计上安全的 OTM 的方案。通过 Gutoski 和 Watrous [STOC 2007] 的基于半定编程的量子游戏框架,我们在量子通用可组合性框架中证明了恶意接收者对令牌的线性数量的自适应查询的安全性,但对多项式数量的查询的安全性问题尚未得到解决。与量子货币文献中衍生的替代方案相比,我们的方案在技术上比较简单,因为它属于“准备和测量”类型。我们还根据两种情况表明我们的方案是“严密的”。
假设 Alice 和 Bob 位于相距遥远的实验室,通过理想量子信道连接。进一步假设他们共享量子态 ρ ABE 的许多副本,这样 Alice 拥有 A 系统,而 Bob 拥有 BE 系统。在我们的模型中,Bob 实验室中有一个可识别的不安全部分:名为 Eve 的第三方已渗透到 Bob 的实验室并控制了 E 系统。Alice 知道这一点,想使用他们共享的状态和理想量子信道以这样的方式传递消息,即 Bob 可以访问他的整个实验室(BE 系统),可以解码该消息,而 Eve 只能访问 Bob 实验室的一部分(E 系统)和连接 Alice 和 Bob 的理想量子信道,因此无法了解 Alice 传输的消息。我们将此任务称为条件一次性密码本,在本文中,我们证明此任务的最佳秘密通信速率等于他们共享状态的条件量子互信息 I ( A ; B | E )。因此,我们通过状态重新分配、条件擦除或状态解构赋予条件量子互信息一种不同于先前工作中的操作含义。我们还以多种方式概括了该模型和方法,其中之一是秘密共享任务,即 Alice 的消息对于仅拥有 AB 或 AE 系统的人应该是安全的,但对于拥有所有系统 A 、 B 和 E 的人应该是可解码的。
图 1:使用 FUNCOIN 进行规范建模的示意图。A. 输入数据集包含来自英国生物库的大量健康和不健康受试者的测量数据。我们在大量健康受试者(训练数据,黑色,N = 32k)上训练我们的模型。在较小的样本外健康受试者子集(测试数据,绿色,N = 14k)上评估模型的通用性。在患有脑部疾病的受试者(粉红色)的现有数据上评估模型识别确诊受试者的能力。B. 训练数据产生脑部测量值规范分布的估计值(平均值 +/- 2 SD),这确定了脑部测量值的规范范围并允许识别异常值。C. 脑功能量化。我们旨在估计 rsfMRI FC 的规范模型,该模型计算为每对 ICA 成分/脑区域的时间序列的皮尔逊相关性。 D. FUNCOIN 在训练组中确定两个投影(g 1 ,g 2 ),使得它们的量级遵循(二维)线性模型(取对数后,参见方法)。个体(样本外)受试者偏差确定为 Z 分数(绿点和注释)。
来源:DOD信息的GAO分析。| GAO-24-106823来自军事部门,交易所,国防委员会和国防物流局的官员表示,他们不确定如何在国防部中识别一次性塑料,衡量任何降低,并确定响应实施指令的角色和责任。这些官员表示,他们通常会等待部门范围内的指导,然后才能响应执行命令和任何指示,以确保其行动与部门范围的目标保持一致。发布了部门范围内的指导,以减少组件的相关目标,角色和责任,这将更好地定位DOD,以减少其一次性塑料废物,如行政命令的实施指示所设想的那样。
盲目的不强迫性。在这项工作中,我们在量子访问攻击下研究了量子访问攻击下的签名方案的安全性[6]。在这里,在选定的消息攻击下概括了存在性不强制性的标准概念,攻击者被授予量子查询访问签名算法。最后,对手应输出他们未从查询中获得的伪造。正式化这样的安全概念是由于所谓的量子无限制原则而变得复杂的,该原则是根据哪些量子状态被复制的。我们使用[2]中介绍的盲目的不强迫性概念(有关以前的和补充概念,请参见[7,15])。我们指出的是,盲目的不强制性定义的选择是因为它暗示了先前的概念,即骨和zhandry的定义[7]和[2]中确定的一次性不被遗忘[15]。Informally, blind unforgeability credits an adversary with a successful break of, e.g., a digital signature scheme, if it outputs a valid message-signature pair given a modified signing oracle that is “blinded” on a random subset of all messages, in the sense that it outputs a dummy symbol instead of a signature, and if the output message is among these blinded messages (see Section 2 for details).
声明:我确认,据我所知和信念,此申请表中给出的信息是正确和完整的。我了解并同意与我的医疗状况有关的信息共享与NHS商业服务局指定的专家小组成员,以申请增加年度付款,并与NHS Counter欺诈当局有关验证本索赔以及调查,预防,检测,检测和起诉欺诈的目的。我了解,如果我有意提供虚假信息,将停止支持,并且可能会要求我退还给我的任何财务支持,并且我可能对起诉和民事恢复程序负责。
借助量子信息的力量,我们可以实现令人兴奋且在经典上不可能实现的密码原语。然而,几乎所有的量子密码学在近期的中型量子技术(NISQ 技术)中都面临着极大的困难;即量子态的寿命短和有限的顺序计算。同时,仅考虑有限的量子对手仍可能使我们实现以前不可能完成的任务。在这项工作中,我们考虑了针对有限量子对手(深度受限对手)的量子密码原语。我们引入了一个(深度受限)NISQ 计算机模型,它们是与浅量子电路交错的经典电路。然后,我们证明了可以针对工作中引入的任何深度受限的量子对手实现一次性记忆,其深度是任何预先固定的多项式。因此,我们获得了一次性程序和一次性证明等应用。最后,我们证明了我们的一次性记忆即使针对恒定速率错误也具有正确性。