本手册中的信息提供了科维纳市烟雾和一氧化碳报警器安装要求的一般准则。每当需要建筑许可证时,每个建筑项目的住宅都必须安装烟雾和一氧化碳报警器(2022 年加州住宅规范第 R314.2.2 节)。统计数据显示,仅在美国,每年约有 5,000 人死于火灾、吸入烟雾、烧伤和意外一氧化碳中毒。因此,烟雾和一氧化碳报警器的安装、测试和正确维护可能是您家中最重要的消防安全功能,在发生火灾或一氧化碳中毒时,可能会挽救您和您所爱的人的生命。何时需要安装烟雾和一氧化碳报警器?每个新的住宅建筑项目都需要安装有线和互连的烟雾和一氧化碳报警器,以符合 2022 年加州建筑规范。除新的住宅建设项目外,每当需要建筑许可证时,每个建设项目的住宅都必须安装烟雾和一氧化碳报警器(2022 年加州住宅规范第 R314.2.2 条)。每个包含燃料燃烧设备、壁炉或带有附属车库的住宅单元都必须安装一氧化碳报警器(2022 年 CRC R315.2.1)。我在哪里安装烟雾报警器? 每个用于睡觉的房间(通常是卧室)。 每个独立睡眠区外,卧室附近(通常是卧室的走廊)。 住宅单元内的每个楼层,包括地下室和可居住的阁楼,但不包括爬行空间和不可居住的阁楼。
警告:一氧化碳警报激活表明高浓度的一氧化碳(CO)可能会杀死您。1)操作测试/静息按钮。注意:按下启动警报单元上的按钮(绿色LED每秒闪烁)将使警报通知保持沉默,包括所有互连单元。如果该设备在六分钟内再次进入警报模式,则它会感知高水平的CO,这很快就会成为危险的情况。2)致电您的紧急服务(消防部门或911)。紧急电话#:___________ 3)立即移至新鲜空气 - 户外或敞开的门 /窗户。进行头部计数以检查所有人是否被考虑。提醒家里的小孩以及可能难以认识到警报声音的重要性或可能在没有帮助的情况下离开该地区的任何其他人。不要重新进入房屋,也不要远离敞开的门/窗户,直到紧急服务响应者到达,房屋已被播出,并且您的警报仍处于正常状态。4)在以下步骤1-3之后,如果警报在24小时内重新激活,请重复步骤1-3,并致电合格的设备技术人员从燃油燃烧设备和设备中调查CO来源,并检查是否正确操作设备。如果在此检查中发现了问题,请立即维修设备。请注意,技术人员未检查的任何燃烧设备并咨询制造商的说明,或直接与制造商联系以获取有关CO安全性和设备的更多信息。确保机动车辆不在住所或附近的车库中运行或没有运行。在纠正CO问题之前,切勿重新启动CO问题的来源。永远不要忽略警报的声音!
生物降解因条件温和、成本低廉、不产生二次污染等优点而受到广泛关注。6,7全球三分之二以上的N2O排放来源于土壤生态圈和水圈,在微生物反硝化途径的最后一步可以还原为无害的氮气(N2)。8–10一氧化二氮还原酶(N2OR)是唯一进行生物反硝化过程的酶,11,12因此,有效利用N2OR对于通过生物方法有效控制N2O排放至关重要。N2OR是一种周质多铜酶,为头尾相连的同型二聚体,每个单体包括两个结构域:C端的电子转移双核CuA中心和N端的催化四核CuZ中心。 13,14通常,CuA由6个氨基酸残基配体,包括1个蛋氨酸、1个色氨酸、2个半胱氨酸和2个组氨酸;CuZ则由7个组氨酸配体。15,16基于N 2 OR的三维结构,对N 2 O催化还原机理的一致看法是,N 2 O与CuZ的催化活性位点结合,然后电子从CuA转移,将N 2 O转化为N 2 。
阿尔茨海默氏病是一种慢性神经退行性疾病,是老年人群中最熟悉的痴呆症类型,迄今为止尚无有效治愈。它的特征是记忆的减少,与胆碱能神经传递的残障相关。目前,乙酰胆碱酯酶抑制剂已成为最受认可的药理学药物,用于症状治疗轻度至中度的阿尔茨海默氏病。这项研究旨在研究天然化合物雌激素和I3M对人脑乙酰胆碱酯酶对人脑乙酰胆碱酯酶的抑制作用。分子对接研究用于鉴定乙酰胆碱酯酶和配体之间的卓越相互作用。此外,使用所有测试构象异构体中的方差分析,对乙酰胆碱酯酶 - 雌激酶 - 雌激酶 - 蛋白酶复合物进行了验证。在预测与乙酰胆碱酯酶活性位点结合的配体的准确构象中,H键,疏水相互作用,PI-PI和阳离子PI相互作用起着至关重要的功能。进一步分析了结合最低自由能的构象异构体。乙酰胆碱酯酶与埃米汀和I3m的结合能分别为-9.72kcal/mol和-7.09kcal/mol。在当前的研究中,研究了预测以在结合能与分子间能之间建立关系(测定系数[R2线性= 0.999),分子间的能量和范德尔壁力(R2线性= 0.994)。doi:http://dx.doi.org/10.14715/cmb/2021.67.4.12版权所有:©2021由C.M.B.协会。保留所有权利。这些结果将有助于获得针对乙酰胆碱酯酶设计新型铅化合物的结构见解,以有效地治疗阿尔茨海默氏病。简介
慢性伤口会影响全球大部分人口,并引起显着的发病率。不幸的是,尚未可用于治疗慢性伤口的有效化合物。内皮功能障碍至少是一氧化氮产生和CGMP水平伴随降低的部分原因,这是慢性伤口的主要病理特征。因此,我们设计和合成了具有独特的双作用活性(TOP-N53)的化合物,充当一氧化氮供体和磷酸二酯酶5抑制剂,并将其局部应用于健康的和疗法受抑制的小鼠中的全粉状皮肤伤口。TOP-N53在健康小鼠中促进了角质形成细胞的增殖,血管生成和胶原蛋白成熟,而无需加速伤口的炎症或疤痕形成。最重要的是,它通过刺激重新上皮化和肉芽组织形成(包括血管生成),部分挽救了用遗传确定的II型糖尿病(DB/DB)的小鼠的愈合障碍。对人和鼠原代细胞的体外研究表明,TOP-N53对角质形成细胞和纤维细胞迁移,角质形成细胞增殖以及内皮细胞迁移和管形成的积极作用。这些结果通过靶向伤口组织中的主要居民细胞,表明了TOP-N53的显着愈合活性。
被困的离子量表已证明了所有量子系统的最高量子操作。1-4因此,如果可以满足整合和扩展协会技术的挑战,则他们将有望成为可扩展的量子信息平台的候选人。这些挑战中的主要是,这种激光的整合不仅是冷却离子所需的,而且通常用于操纵Qubits。目前,正在提出两种主要方法。首先,如果可以将硅光子学中所示的功能扩展到与与原子离子量子量所需的可见和紫外线波长相兼容的材料,则可以提供可扩展的手段来传递必要的激光5,6。7秒,正在探索几种用于无激光处理原子量子A的方案,其中涉及与强静电磁场梯度配对的微波场,8-10 A Microwave磁场梯度,11-13微波磁场梯度,11-13微波磁场梯度梯度,14或接近Motiention Motional Mode频率。15,16集成光学和微波控制都需要在离子陷阱制造中的进步才能真正扩展。最近的提案17概述了第三个
在所有量子系统中,囚禁离子量子比特已证明具有最高保真度的量子操作 1–4 。因此,如果能够应对集成和扩展相关技术的挑战,它们将成为可扩展量子信息平台的有希望的候选者。这些挑战中最主要的是这种激光器的集成,这不仅是冷却离子所必需的,而且通常也是操纵量子比特所必需的。目前,正在研究两种主要方法来解决这个问题。首先,如果硅光子学中展示的能力可以扩展到与原子离子量子比特所需的可见光和紫外波长兼容的材料,那么集成光子学可以提供一种可扩展的方式来传输必要的激光器 5,6 。其次,人们正在探索几种无激光操控原子离子量子比特的方案,这些方案涉及微波场与强静态磁场梯度 8-10、微波磁场梯度 11-13、微波修饰态 14 或运动模式频率附近振荡的磁场梯度 15,16 的配对。集成光学和微波控制都需要离子阱制造技术的进步才能真正实现可扩展性。
2014 年,DLR 开始研究由一氧化二氮和碳氢化合物组成的预混合单推进剂。这些推进剂具有良好的特性,因为它们无毒、由低成本的成分组成,可提供高 Isp,并且由于自加压操作可以简化推进系统。最初,DLR 选择了一氧化二氮 (N 2 O) 和乙烯 (C 2 H 4 ) 的混合物。在项目过程中,一氧化二氮和乙烷 (C 2 H 6 ) 的混合物也被纳入研究活动。这些活动是 DLR 未来燃料项目的一部分,分为五个主要部分:1) 研究火箭燃烧室中推进剂的燃烧行为,2) 测试和开发火焰阻火器,3) 开发和简化反应机制,4) 对燃烧过程进行数值模拟,5) 基本混溶性研究。该项目的重点是前三个任务,而后两个任务用于扩大对以下方面的了解:1、美国航空航天局成员,推进剂部设施组组长。2、推进剂部学生研究员。3、美国航空航天局成员,推进剂部研究工程师。4、推进剂部学生研究员。5、美国航空航天局成员,推进剂部研究工程师。6、推进剂部学生研究员。7、推进剂部负责人。美国航空航天局高级会员。8、空间推进研究所所长。9、化学动力学与分析系博士后研究员。10、化学动力学与分析系化学动力学建模组组长。11、化学动力学与分析系研究科学家。12、化学动力学与分析系博士后研究员。13、化学动力学与分析系实验反应动力学负责人。14、低碳工业过程研究所代理所长,前化学动力学系主任。
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
1 曼彻斯特大学地球与环境科学学院,牛津路,曼彻斯特,M13 9PL,英国 2 克兰菲尔德大学机载大气测量设施 (FAAM),克兰菲尔德,MK43 0AL,英国 3 约克大学化学系沃尔夫森大气化学实验室,赫斯灵顿,约克 YO10 5DD,英国 4 英国气象局,菲茨罗伊路,埃克塞特,EX1 3PB,英国 5 爱丁堡大学地球科学学院,爱丁堡,EH9 3FF,英国