在所有量子系统中,囚禁离子量子比特已证明具有最高保真度的量子操作 1–4 。因此,如果能够应对集成和扩展相关技术的挑战,它们将成为可扩展量子信息平台的有希望的候选者。这些挑战中最主要的是这种激光器的集成,这不仅是冷却离子所必需的,而且通常也是操纵量子比特所必需的。目前,正在研究两种主要方法来解决这个问题。首先,如果硅光子学中展示的能力可以扩展到与原子离子量子比特所需的可见光和紫外波长兼容的材料,那么集成光子学可以提供一种可扩展的方式来传输必要的激光器 5,6 。其次,人们正在探索几种无激光操控原子离子量子比特的方案,这些方案涉及微波场与强静态磁场梯度 8-10、微波磁场梯度 11-13、微波修饰态 14 或运动模式频率附近振荡的磁场梯度 15,16 的配对。集成光学和微波控制都需要离子阱制造技术的进步才能真正实现可扩展性。
主要关键词