量子信息处理为计算提供了更通用的概念,有望比传统计算机更高效。通过将信息编码在纠缠量子态中,某些算法(例如整数分解)有望实现比最知名的传统变体指数级加速。捕获离子是量子信息处理这一高度活跃领域的领先技术之一。它们允许原理验证演示,但仍然仅限于对数十个量子比特的操作。将这些系统扩展到其计算能力超过传统计算机能力的规模仍然是一项非常具有挑战性的任务。在本论文的范围内,对低温离子捕获装置进行了修改和表征,目的是展示可扩展量子计算的构建模块。本论文介绍了三个相互关联的项目。第一个项目涉及实验装置本身,该装置内有一个分段表面陷阱,能够捕获 40 Ca + 和 88 Sr + 离子。我们描述了该装置和实施的修改以及为评估其性能而执行的特性测量。然后使用该装置开发和评估一种用于纠缠门的新型校准算法。量子门操作的性能由实验决定,取决于操作参数的确定和设置的准确性,以及这些参数的稳定性。开发的校准协议可以自动估计和调整被广泛用于离子阱量子信息处理器的两量子比特 Mølmer-Sørensen 纠缠门操作的实验参数。使用贝叶斯参数估计的协议在不到一分钟的时间内完成,由于校准错误导致的剩余中位门不保真度小于退相干源给出的不保真度。最后,使用了一种新颖的门方案来演示混合物种纠缠,它可以实现按顺序读出而不会扰乱整个寄存器,这是纠错的关键因素。相同的门方案也可用于在量子比特之间产生纠缠,这是量子位的概括。通过使用每个离子的更多级别,可以在相同数量的粒子中编码更多信息,从而增加量子计算希尔伯特空间的大小。
本报告总结了如何系统地分析软件架构的可扩展性质量属性要求。本报告介绍了可扩展性和软件架构的可扩展性要求的常见形式。它提供了一组定义、核心概念和一个框架,用于推理架构和最终系统对可扩展性要求的满足(或不满足)。它描述了一组通常用于满足可扩展性要求的机制(例如模式和策略)。它还提供了一种方法,分析师可以通过该方法确定架构文档包是否提供了足够的信息来支持分析,如果是,则可以确定所做的架构决策是否包含与可扩展性要求相关的严重风险。分析师可以使用此方法来确定这些要求(表示为一组场景)是否已充分指定以支持分析需求。围绕这一质量属性的推理应允许分析师在掌握适当的架构文档的情况下,根据未来预期的需求来评估当今架构决策中固有的风险。
风险投资和商业部门的作用:短期与长期资本市场在开发新技术中发挥着至关重要的作用。风险投资在量子计算中发挥着积极作用;然而,鉴于 NISQ 的固有局限性,其中许多投资的长期收益有限。这些商业驱动力不一定适用于 FTQC,因为 FTQC 寻求的是实现量子计算真正承诺所需的持续、长期耐心的资本投资。商业和风险投资部门普遍存在的短期思维正在推动量子计算发展专注于短期收益。这些短期收益与建立 FTQC 所需的发展之间的重叠越来越小——这不仅对技术本身而且对投资都是一种风险。
本报告总结了如何系统地分析软件架构的可扩展性质量属性要求。本报告介绍了可扩展性和软件架构的可扩展性要求的常见形式。它提供了一组定义、核心概念和一个框架,用于推理架构和最终系统对可扩展性要求的满足(或不满足)。它描述了一组通常用于满足可扩展性要求的机制(例如模式和策略)。它还提供了一种方法,分析师可以通过该方法确定架构文档包是否提供了足够的信息来支持分析,如果是,则可以确定所做的架构决策是否包含与可扩展性要求相关的严重风险。分析师可以使用此方法来确定这些要求(表示为一组场景)是否已充分指定以支持分析需求。围绕这一质量属性的推理应允许分析师在掌握适当的架构文档的情况下,根据未来预期的需求来评估当今架构决策中固有的风险。
对于某些功能。由原则技术验证。“ https://www.principledtechnologies.com/dell/oem-security-feature-comparison-0424.pdf”安全功能的比较,2024年4月。可管理性:基于戴尔内部分析,2024年1月。在比较戴尔更新流程的系统管理功能时,最可操纵的商业PC,戴尔可管理性解决方案的功能以及与第三方管理解决方案的集成以及竞争对手更新流程,系统管理解决方案功能以及与第三方管理解决方案的集成。第三方管理解决方案 - Microsoft Intune,Workspace One是单独的购买。Intel VPRO(支持带外系统管理)是另一种系统配置升级。
项目Tourbillon显示,实施提供付费匿名的设计是可行的。该项目表明这两个原型都是可扩展的,并且可以处理越来越多的交易。还证明,可以实施用于确保匿名性的加密技术量子安全盲目签名。但是,实施被证明具有挑战性。量子安全加密表现出缓慢的性能和有限的功能,吞吐量减少了200倍,突出了进一步的研究和开发的需求。最后,对两个原型的比较说明了隐私和安全性之间的权衡:EC1提供了无条件的付款人匿名性,但EC2具有更弹性的安全功能,可以更好地保护伪造。
量子硬件有可能有效地解决物理和化学中的计算困难问题,从而获得巨大的实际奖励。模拟量子模拟通过使用受控的多体系统的动力学来模仿另一个系统的动力学来实现这一目标。这种方法在近期设备上是可行的。我们表明,以前的模拟量子模拟的理论方法遭受了禁止可扩展实施实施的基本障碍。通过引入一个新的数学框架,并以额外的工程耗散资源的资源超越了通常的哈密顿复杂性理论工具箱,我们表明可以克服这些障碍。这为模拟量子模拟器的严格研究提供了有力的新观点。
实现净零排放需要经济各个部门进行大规模变革,推动这一转变的努力正在加大。过去几年中,通过“气候创新 2050”计划,气候与能源解决方案中心 (C2ES) 与不同部门的领先公司密切合作,研究到 2050 年实现美国经济脱碳的挑战和解决方案。正如我们在《迈向零排放:美国气候议程》中所述,实现净零排放需要大规模变革,但也需要我们解决一些独立且紧迫的挑战。为了让政策制定者了解这些近期和长期问题,C2ES 发布了一系列“近距离观察”简报,以探讨脱碳挑战的重要方面,重点关注关键技术、关键政策工具和跨部门挑战。这些简报将探讨政策影响并概述到本世纪中叶实现净零排放所需的关键步骤。
新兴技术可以获取越来越大规模的数据,有望改变系统神经科学的发现。然而,目前数据采集规模的指数增长是一把双刃剑。扩大数据采集规模可以加快发现周期,但也可能误解结果或可能减慢周期,因为高维数据带来的挑战。主动、自适应、闭环实验范式使用经过优化的硬件和算法来实现时间关键计算,以提供解释观察结果的反馈并测试假设以主动更新刺激或刺激参数。从这个角度来看,我们回顾了主动和自适应实验的重要概念,并讨论了如何在发现循环的不同阶段有选择地限制维度和优化策略,以帮助减轻高维数据的诅咒。主动和自适应闭环实验范式可以在数据规模呈指数级增长的情况下加快发现速度,为神经科学指数增长时代及时和迭代地修改假设和发现提供路线图。