量子信息处理为计算提供了更通用的概念,有望比传统计算机更高效。通过将信息编码在纠缠量子态中,某些算法(例如整数分解)有望实现比最知名的传统变体指数级加速。捕获离子是量子信息处理这一高度活跃领域的领先技术之一。它们允许原理验证演示,但仍然仅限于对数十个量子比特的操作。将这些系统扩展到其计算能力超过传统计算机能力的规模仍然是一项非常具有挑战性的任务。在本论文的范围内,对低温离子捕获装置进行了修改和表征,目的是展示可扩展量子计算的构建模块。本论文介绍了三个相互关联的项目。第一个项目涉及实验装置本身,该装置内有一个分段表面陷阱,能够捕获 40 Ca + 和 88 Sr + 离子。我们描述了该装置和实施的修改以及为评估其性能而执行的特性测量。然后使用该装置开发和评估一种用于纠缠门的新型校准算法。量子门操作的性能由实验决定,取决于操作参数的确定和设置的准确性,以及这些参数的稳定性。开发的校准协议可以自动估计和调整被广泛用于离子阱量子信息处理器的两量子比特 Mølmer-Sørensen 纠缠门操作的实验参数。使用贝叶斯参数估计的协议在不到一分钟的时间内完成,由于校准错误导致的剩余中位门不保真度小于退相干源给出的不保真度。最后,使用了一种新颖的门方案来演示混合物种纠缠,它可以实现按顺序读出而不会扰乱整个寄存器,这是纠错的关键因素。相同的门方案也可用于在量子比特之间产生纠缠,这是量子位的概括。通过使用每个离子的更多级别,可以在相同数量的粒子中编码更多信息,从而增加量子计算希尔伯特空间的大小。
主要关键词