本文介绍了一种用于评估受集中力作用的三材料复合梁横向挠度的实验装置。该装置中使用的三种材料是钢、铝和木材。在本实验中,考虑了两种层粘合方法:胶合和螺栓连接。在胶合配置中,三个堆叠的层使用商用胶水沿梁长度相互连接。对于螺栓系统,各层使用四个对称分布的螺栓和螺母连接。将两种粘合方法的梁横向挠度实验结果与理论计算进行了比较。比较结果表明,胶合系统挠度数据与理论更一致。本文还采用了等效截面法来求解复合梁弯曲应力。最后,彻底研究了复合梁的关键几何和材料参数对梁弯曲应力的影响,重点是承受机械弯曲载荷的电子组件的结构分析。
众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
第 9 章 康涅狄格大学结构 142 9.1 实验装置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................... 152 9.5 主动控制的初步研究 .................................................................................................................................................................................................. 159 9.6 研究结果 .................................................................................................................................................................................................................................. 163
4 实验装置和硬件 15 4.1 主光学布局. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... 22 4.3.6 干涉仪....................................................................................................................................................................................................................................................................24 4.4 主光学装置调准过程....................................................................................................................................................................................................................................................24 4.5 二次装置调准....................................................................................................................................................................................................................................................................24 4.5 二次装置调准.................................................................................................................................................................................................................................................................................... ...26
第 2 章:实验装置 ................................................................................................ 16 2.1 空气供应 ................................................................................................................ 16 2.2 进气室和旋流器 ................................................................................................ 19 2.3 主燃烧室 ............................................................................................................ 23 2.4 出口排气扩散器 ................................................................................................ 25 2.5 传热实验 ............................................................................................................. 25 2.5.1 FLIR SC500 红外热成像系统 ............................................................. 25 2.5.2 INSTRUNET 温度测量系统 ............................................................................. 27 2.5.3 壁面加热器 ................................................................................................ 28 2.6 流动特性实验 ................................................................................................ 33 2.6.1 TSI IFA300 热线恒温风速仪 ................................................................ 33
图 2:(a) 在 SIXS 光束线 (SOLEIL) 进行实时研究的实验装置,(b) 入射角为 α i 的掠入射散射几何。指示了反射的 x 射线束。显示了布拉格角 2 θ 处主 Pd(111) 布拉格反射的指向几何。由于掠入射几何,动量转移 q = kf − ki 与表面法线 n 成角度 θ − α i 。ki 和 kf 分别是入射和散射 x 射线束的波矢。通过扫描探测器角度 δ 和 γ 获得 XRD 图。在沉积过程中,2D 探测器监测白色矩形指示的区域。
图 1. 上图:研究地点,a) 主 10 米通量塔,配备涡流协方差装置;b) 降水计;c) 2.3 米高桅杆,安装 4 分量辐射计;d) 垂直杆,安装热电偶和加热针阵列。插图显示了该地点位于塔西亚皮克山谷,距离哈德逊湾以东约 4 公里。下图:研究地点示意图,展示了监测能量平衡条件的主要仪器。整个实验装置包含在 20 米范围内。
图 2. 实验装置。PBS 代表偏振分束器,蓝色 AOM 表示控制 3D 光学胶的声光调制器 (AOM),吸收光束 AOM 代表控制成像光束频率失谐的 AOM,绿色锁 AOM 表示控制来自参考腔 (ULE 腔) 的 530.7 nm 激光频率失谐的 AOM,蓝色锁 AOM 代表控制来自参考腔 (ULE 腔) 的 410.6 nm 激光频率失谐的 AOM
对于高温(从 600 °C 到 962 °C),铂电阻温度计和热电偶比较的校准不确定度受到标准温度计的不稳定性和可重复性以及标准温度计温度不均匀性的限制。配有比较块的烤箱的工作体积。为了改善这些不确定性,我们研究了同时连接多个热管、使用不同传热流体并由同一压力调节系统控制的可能性。该实验装置被称为“温度放大器”,由两根充满钠和水的热管组成。本文对这项工作进行了盘点,该工作产生了一个可操作的工具,并介绍了相关的校准不确定性。