风洞是一种用于空气动力学测试的实验装置,空气通过不同面积的管道吹入或吸入,其目的是模拟与飞行环境不同的气流条件。它提供了一个条件环境来测试空气动力学体,以提取控制流动的许多参数。风洞实验不仅限于飞机,还用于汽车、直升机、航天器再入、高层建筑和摩天大楼设计。风洞可以在从亚音速(M < 0.4)到高超音速(M > 5)[1] 的所有速度下运行。它们根据气流方向、测试段大小等进行分类。其中,开路风洞是本研究中的热门话题。开路采用周围空气作为流体介质。任何飞行器的空气动力学设计所需的主要数据来源是 CFD、风洞试验以及飞行试验,这些试验通常采用简化的几何模型 [11]。决定空气动力学作为一门科学的成功及其广泛应用的关键研究方法
摩擦精加工技术是一种超精加工工艺,通过磨料的机械作用可以改善表面粗糙度。可以采用多种运动学,这些磨料在撞击处理过的表面时可以具有各种轨迹和速度(法向、斜向、切向等)。这项工作侧重于拖曳精加工工艺,特别是球形磨料垂直撞击铝部件(6061T6)表面的影响。它首先研究了使用润滑剂时初始表面粗糙度和球形介质直径的影响。其次,它分析了围绕磨料和表面的化学加速器的影响。设计了一个原始实验装置来观察各种表面粗糙度参数的演变并确定局部的物理和化学机制。结果表明,最终的表面精加工在很大程度上取决于磨料的尺寸,与润滑剂相比,化学添加剂可以加速材料去除率并改善粗糙度。
所有上述课程的总学分要求和学分构成(即总学分在各个部分的分配)相同。通常,学生修 27 个理论和实验课程学分以及 24 个项目作业学分。唯一的区别是它们分布在不同的时间范围内(2/3 年)。全日制常规 2 年制 M.Tech 课程的学生将根据他们担任不同课程讲师的助教 (TA) 的服务获得津贴(按照 MHRD 标准)。典型的 TA 任务包括考试监考、监督本科实验室实验等。被录取到全日制 M.Tech 3 年制课程的学生除了教学协助外,还负责提供研究协助。研究助理 (RA) 的典型职责包括管理实验室、为正在进行的研究准备实验装置等。全日制 3 年制 M.Tech 课程的优势在于学生可以更好地接触特定课程下的研究。RA 的津贴可能会略高一些。
摘要。检测引力介导的纠缠可以提供引力场遵循量子力学的证据。我们报告了使用光子平台模拟该现象的结果。该模拟测试了通过使用变量来介导纠缠来探测变量的量子性质的想法,并产生了理论和实验见解,阐明了未来引力实验所需的操作工具。我们采用三种方法来测试纠缠的存在:贝尔测试、纠缠见证和量子态断层扫描。我们还模拟了引力坍缩模型预测的或由于实验装置不完善而导致的替代方案,并使用量子态断层扫描来证明不存在纠缠。模拟强化了两个主要教训:(1)哪些路径信息必须首先编码,然后从引力场中相干地删除;(2)进行贝尔测试可以得出更有力的结论,证明存在引力介导的非局域性。
摘要。本文研究了数字图像相关 (DIC) 和有限元分析在印刷电路板 (PCB) 应变测量中的应用。电路板 (PCB) 旨在机械支撑和电连接电子元件组件。由于螺钉组件、放置 PCB 的表面水平差异、组装电子元件的过程会在 PCB 中引起一定的应力和变形状态。受影响的主要组件是微处理器,因为它们是用 BGA - 球栅阵列 (BGA) 粘合到 PCB 上的。数字图像相关 (DIC) 是一种全场非接触式光学方法,用于测量实验测试中的位移和应变,基于测试期间拍摄的图像的相关性。实验装置采用 Dantec Q-400 系统(用于图像捕获)和 Istra 4D 软件(用于图像相关和数据分析)实现。将获得的应变的最大水平与允许极限进行比较。有限元分析 (FEA) 是一种数值分析方法,用于分析任何给定几何结构中的应力和应变。关键词:数字图像相关;有限元分析;PCB;应变。
研究了相位像差及其对激光诱导击穿引起的流场发展的影响。使用可变形镜将相位像差施加到波长为 1064nm 的高能激光脉冲上。设计了一个实验装置来捕捉激光诱导击穿引起的流场运动,该装置着重于捕捉流场的横向轮廓和同轴轮廓。结果显示,由于非平面相的存在,火花吸收的激光脉冲能量 (181mJ) 显著降低,这是由于在通常发生击穿的焦平面中扩散所致。在收集的数据中,研究了 Zernike 0 ◦ 散光、Zernike Y-彗形像差和 Zernike 球面像差的单个实例。著名的 Horn-Schunck 光流法用于分析阴影图像,产生运动的密集光流场表示。结果表明,所研究的每种像差都会产生独特的流场,显示出超特定局部流规范的潜力,并进一步讨论了其含义。
图 1 | a. 实验装置由放置在前臂肌肉中的 320 个表面 EMG 电极组成。运动指令由受试者前方的显示器上显示的虚拟手视频引导。b. 一些示例电极显示受试者尝试抓握任务(手指屈伸,0.5Hz)时的原始 HDsEMG 信号。c. 基于运动单元动作电位均方根值的空间映射示例。d. 在两指捏合任务的 10 秒内识别的运动单元激发(颜色编码)的光栅图。e. 使用因式分解分析为同一任务提取的神经模块。f. 具有两个神经模块的各个运动单元的 Pearson 相关值 (r)。g. 在所有任务和受试者中识别的运动单元 (MU) 数量(每个点代表一个受试者)。h. 两个神经模块(M1 - 蓝色和 M2 - 红色)解释方差的百分比,在所有受试者中平均。
此外,IIST 拥有充满活力的研究环境,有超过 248 名博士学者从事前沿研究领域。制定的学术课程旨在加强基础知识,通过实践工作提供实践经验,增强理解并扩展各个感兴趣领域的知识范围。IIST 致力于培养学生的创新文化。IIST 的所有学术实验室都经过精心设计,拥有最好的实验装置和设备。IIST 拥有三个卓越中心,分别是先进推进和激光诊断、虚拟现实和纳米科学与技术,学生可以参与各种先进而复杂的实验。许多最先进的研究实验室为学生提供了一个独特的学习环境,让他们可以深入研究前沿研究。随着 IIST 进入下一个十年,十年计划为年轻聪明的学生提供了充足的机会,让他们积极参与 ARIS、InspireSAT-1、空间机器人、空间传感器等太空相关项目。请访问网站 www.iist.ac.in 了解 IIST 及其活动的详细概述。
量子密钥分发 (QKD) 使两个远程方能够以基于量子物理定律的信息论安全性进行密钥交换。将密钥信息编码为连续变量 (CV),例如光相干态的正交分量的值,使实现更接近标准光通信系统,但这是以低信噪比操作所需的数字信号处理技术显著复杂为代价的。在这项工作中,我们希望通过提供高度模块化的开源软件来降低与此困难相关的 CV-QKD 实验的进入门槛,该软件原则上与硬件无关,可用于多种配置。我们使用带有本地生成的本地振荡器、频率复用导频和 RF 异差检测的实验装置对这个称为 QOSST 的软件进行了基准测试,并在渐近极限下获得了城域距离上 Mbit/s 数量级的最先进的密钥速率。我们希望 QOSST 能够用于促进 CV-QKD 的进一步实验进展,并由社区进行改进和扩展,以在各种配置中实现高性能。
摘要:随着半导体行业在过去几十年的迅猛发展,其对环境的影响也日益令人担忧,包括淡水的抽取和有害废水的产生。四甲基氢氧化铵 (TMAH) 是半导体废水中不可避免的有毒化合物之一,应在废水排放前去除。然而,很少有经济实惠的技术可以去除半导体废水中的 TMAH。因此,本研究的目的是比较不同的处理方案,如膜电容去离子 (MCDI)、反渗透 (RO) 和纳滤 (NF),用于处理含有 TMAH 的半导体废水。进行了一系列台式实验装置,以研究 TMAH、TDS 和 TOC 的去除效率。结果证实,MCDI 工艺和 RO 一样表现出很强的去除能力,而 NF 在相同的恢复条件下无法充分去除。 MCDI 对包括 TMA+ 在内的一价离子的去除率高于二价离子。此外,在碱性溶液中,MCDI 对 TMA+ 的去除率高于在中性和酸性条件下的去除率。这些结果首次证明了 MCDI 在处理含有 TMAH 的半导体废水方面具有巨大潜力。