研究正常或病理条件下的大脑动态已被证明是一项具有挑战性的任务,因为对于最佳方法没有统一的共识。在本文中,我们提出了一种基于传递熵的方法来研究健康受试者在睁眼(EO)和闭眼(EC)静息状态下不同大脑半球之间的信息流。我们使用了一个模拟临床环境中技术条件的实验装置,并从 65 Hz 采样率的 24 通道脑电图(EEG)短记录中收集数据集。我们的方法考虑了两种条件下的半球间和半球内信息流分析,并依赖于从 EEG 通道之间的传递熵估计计算出的 4 个指标。这些指标提供有关活动连接的数量、强度和方向性的信息。我们的结果表明,在 EC 条件下,alpha、beta1 和 beta2 频带的信息传递有所增加,但在任何一种条件下,半球间信息移动都没有优先的方向。这些结果与之前报道的以更高采样率进行更密集的 EEG 记录的研究一致。总之,我们的方法表明,在 EO 和 EC 静息状态下,大脑信息传递的动态存在显著差异,这也可以应用于常规临床治疗。
寻找更精确、更准确的频率标准在基础科学、精密测量和技术应用的发展中发挥着关键作用。如今,光学钟的不确定度已达到 10 − 18 及以下。本博士论文主要研究囚禁离子光学钟的研发和特性。介绍了两种不同的囚禁离子钟:一种带有单个 40 Ca + 离子,另一种带有 40 Ca + / 27 Al + 混合离子晶体。论文首先概述了操作和表征囚禁离子钟所需的理论基础,并描述了实验装置。接下来是三个主要项目的成果:第一个项目以德国联邦物理技术研究院 UTC(PTB)的 4 s 2 S 1/2 ↔ 3 d 2 D 5/2 40 Ca + 钟跃迁相对于协调世界时的绝对频率测量为中心。为了进行这项测量,我们在因斯布鲁克的实验室和 PTB 的时钟之间建立了一个链接,并使用全球导航卫星系统 GNSS 进行了特性分析。我们的时钟和 PTB 的时钟之间的比较是使用精密单点定位 ( PPP ) 技术进行的。从 16 日到 25 日,进行了为期十天的活动
摘要。高维量子态的实验工程是几种量子信息协议的关键任务。然而,应用现有的量子态工程协议需要对噪声实验装置进行高精度的表征。这在实际场景中往往是缺乏的,影响了工程状态的质量。我们通过实验实现了一个自动自适应优化协议来设计光子轨道角动量 (OAM) 状态。该协议在给定目标输出状态的情况下,根据输出测量统计数据对当前产生的状态的质量进行在线估计,并确定如何调整实验参数以优化状态生成。为了实现这一点,该算法不需要包含生成设备本身的描述。相反,它在完全黑盒的场景中运行,使该方案适用于各种各样的情况。该算法控制的手柄是一系列波片的旋转角度,可用于概率地生成任意四维 OAM 状态。我们在经典和量子领域展示了不同目标状态下的方案,并证明了其对控制参数外部扰动的鲁棒性。这种方法代表了一种强大的工具,可用于自动优化量子信息协议和技术的嘈杂实验任务。
摘要:通过自供电传感器系统对高压电力线进行状态监测已成为公用事业的首要任务,目的是检测潜在问题、提高电力传输和配电网络的可靠性并减轻故障的不利影响。从流过高压线的交流电产生的磁场中收集能量可以为监测系统提供运行所需的电力,而无需依赖硬接线或基于电池的方法。然而,开发一种从如此有限的能源中获取电力的能量收集器需要详细的设计考虑,这可能无法产生技术和经济上最优的解决方案。本文提出了一种创新的基于模拟的策略来表征感应电磁能量收集器和功率调节系统。可以对收集的功率和输出电压范围或磁芯饱和度水平提出性能要求。模拟模型已经产生了满足要求的不同收集器配置。通过基于能量收集器的实验装置验证了该方法的准确性和效率,该能量收集器由硅钢磁芯和功率调节单元组成。对于最坏情况,当初级电流为 5 A 时,收集器提取的最大功率可以接近 165 mW,功率密度为 2.79 mW/cm3。
本研究探索了将太阳能和风能等可再生能源整合到水培温室中供电的可行性。这样,水培温室的能源自主性就得到了保证。研究首先评估了所研究系统的年用电量。还设计了一个能够满足其全年能源需求的可再生能源系统。主要目标是评估两种可再生能源(即光伏板和风力涡轮机)的效率,并通过实施模型模拟来改善它们在农业室内的整合。研究了两种场景:第一种场景代表与电网相连的带储能的光伏电站,而第二种场景代表与电网相连的风力发电厂。这项数值分析由为期一年的实验研究补充,该研究涉及连接到带储能的网络的光伏装置,而储能又连接到实验装置。为了处理可再生能源温室内的能源,开发了一种基于模糊逻辑控制器的能源管理系统。该系统旨在保持能量平衡并确保持续供电。能源管理系统优化能源流,以最大限度地减少消耗,减少对电网的依赖,提高整个系统的效率,从而节省成本并带来一定的环境效益。
摘要:本研究提出了一种设计电力电子转换器的方法,称为“面向制造的自动设计”(ADFM)。该方法建议使用标准化转换器单元创建电源转换器阵列 (PCA)。该方法受到微电子集成电路设计流程、电力电子构建块和多单元转换器的极大启发。为了实现所需的电压/电流规格,PCA 转换级由多个转换标准单元 (CSC) 串联和/或并联组装而成。ADFM 使用基于数据的模型来模拟 PCA 的行为,计算工作量极小。这些模型需要一种特殊的特性描述方法来最大限度地增加知识量,同时最大限度地减少数据量。这种方法包括制定实验计划以选择包含有关 PCA 技术最多信息的相关测量,构建能够自动获取数据的实验装置,并使用统计学习来训练能够产生精确预测的模型。本研究在九个不同的 PCA 中进行了超过 210 小时的测试,以便将数据收集到统计模型中。这些模型预测了几种 PCA 的效率和转换器温度,并将准确度与实际测量值进行了比较。最后,使用这些模型比较了特定电池充电应用中 PCA 的性能。
摘要:麦克斯韦妖是 JC 麦克斯韦于 1867 年设计的一项思想实验,目的是证明热力学第二定律不具有普遍性,因为它有一个反例。由于许多人认为第二定律提供了时间之箭,对其普遍性的威胁也威胁着时间方向性的解释。多年来,人们通过证明由于这样或那样的原因麦克斯韦妖不可能存在来“驱除”麦克斯韦妖,但无一成功。我们已(在许多出版物中)通过一般的状态空间论证证明麦克斯韦妖与经典力学兼容,而基于兰道尔论文的最新解决方案并不具有普遍性。在本文中,我们证明麦克斯韦妖也与量子力学兼容。我们通过分析一个特定的(但高度理想化的)实验装置并证明它违反第二定律来做到这一点。我们的讨论是在标准量子力学的框架内进行的;我们在有和没有投影假设的量子力学框架中给出了两个独立的论证。我们在分析中讨论了测量和擦除相互作用之间的联系,并展示了这些概念如何应用于微观量子力学结构。我们讨论了经典“宏观状态”概念的量子力学对应物,从而解释了为什么我们的量子恶魔设置不仅在微观层面上有效,而且在宏观层面上也有效,这是正确理解的。我们的分析的一个含义是,第二定律不能为时间箭头的解释提供普遍的类似定律的基础;这个解释必须在别处寻找。
量子行走因其数学复杂性和众多应用而受到广泛赞赏。从传输特性 [36, 5] 到量子算法 [46, 12],量子行走的例子比比皆是。量子行走用于计算的方式与用于建模物理系统的方式之间存在重要区别。对于计算,获得有效的算法是一个关键目标,而对于模型,目标是准确描述系统的物理特性。量子行走实验 [40, 28, 6, 45] 大多实现了物理量子行走,随着量子行走的演化,行走者(光子、原子)在实验装置中穿过一条路径。在算法设置中有一些量子行走的实现,例如 [44],其中行走被编码成标记行走者位置的量子位。在本文中,我解释了为什么这个编码步骤对于产生有效的量子行走算法至关重要,并提供了在不久的将来随着量子硬件的发展可能有用的算法示例。本文组织如下。在第 2 节中,我概述了物理理论、科学、工程和计算推理的一般框架。接下来的第 3 节讨论了什么使计算“高效”。第 4 节讨论了如何在连续时间设置中使用量子行走来实现高效算法。第 5 节总结了讨论并思考了量子行走计算的未来。
近几十年来,人们对可再生能源的兴趣日益浓厚。电网中通过电力电子连接的可变可再生能源资源数量不断增加,降低了总机械系统惯性。水电等频率调节资源将在平衡可变可再生能源资源方面变得更加重要,对稳定性和性能提出了更高的要求,以维持稳定的电网。本论文涉及非直接电耦合发电机组的机械惯性降低。论文首先描述了当今电网系统惯性情况,并介绍了两种用于估计用于提供合成惯性的电网频率导数的方法和一种用于增强同步发电机机械惯性响应的方法。在小规模实验装置中测试了合成惯性和增强惯性方法,并与北欧电网的测试结果进行了比较。设计并构建了一个全尺寸混合储能系统,使用分频法作为功率控制器。结果表明,基于功率频率导数控制器的合成惯性方法在纳米电网实验装置的正常运行期间实现了更好的电网频率质量。通过模拟和实验测试对结果进行了评估。混合储能解决方案的结果表明,通过使用河流水力发电厂的缓慢运行和电池储能系统进行频率控制储备,可以提高频率质量。
众所周知,折纸超材料会根据其折叠状态显示出高度可调的泊松比值。关于可部署折纸镶嵌中的泊松效应的大部分研究都局限于理论和模拟。要通过实验实现折纸超材料中所需的泊松效应,需要特别注意边界条件,以实现可部署的非线性变形,从而实现可调性。在这项工作中,我们提出了一种新颖的实验装置,适用于研究在施加方向和横向同时发生变形的 2D 折纸镶嵌中的泊松效应。该装置包括一个夹持机构(我们称之为圣维南夹具),以消除单轴测试实验中的圣维南端部效应。使用此装置,我们对 Morph 折纸图案进行泊松比测量,该图案的配置空间结合了 Miura-ori 和 Eggbox 母图案的特点。我们通过实验观察到了 Morph 图案的泊松比符号切换能力,以及它通过拓扑变换显示泊松比的完全正值或完全负值的能力。为了证明新装置的多功能性,我们还对标准 Miura-ori 和标准 Eggbox 图案进行了实验。我们的结果表明,在折纸超材料中泊松比测量及其可调性方面,理论、模拟和实验是一致的。所提出的实验技术可用于研究折纸超材料在静态和动态状态下的其他可调特性,例如有限应变泊松比、弹性热膨胀和波传播控制。