所有物质的结构和性质都由基本相互作用和对称性决定。对于可见物质的小组成部分——原子来说尤其如此。因此,原子光谱的研究是提高我们对自然理解的重要工具。高电荷离子构成了所有原子系统的大多数,因为每个单独的元素都具有与电子一样多的电荷状态,并且它们在宇宙中无处不在。因此,它们的系统研究不仅是原子物理学的一个组成部分,而且对天体物理学、核物理学和聚变研究等许多其他领域也具有重要意义。最近,高带电离子中的光学跃迁已被提出用于粒子物理标准模型之外的未知物理的敏感测试和新型光学原子钟。然而,由于实验方法不充分,相对光谱精度仅略优于 10 −6,迄今为止阻碍了此类项目的实施。在这项工作中,我们首次展示了高电荷离子的相干激光光谱。与以前使用的光谱方法相比,精度可以提高约 8 个数量级。以高电荷40 Ar 13 +离子中的光学2 P 1 / 2 – 2 P 3 / 2精细结构跃迁为例进行了研究。将该物种的单个离子从热等离子体中分离出来,并将其与激光冷却的单电荷 9 Be + 离子一起作为双离子晶体存储在低温保罗阱的谐波势中。然后,这个耦合的量子力学系统被冷却到运动基态——这是高电荷离子所达到的最冷状态。利用量子逻辑,可以制备40 Ar 13 +离子的电子态,经过光谱分析后,转移到9 Be +逻辑离子并进行检测。此外,还测量了激发态的寿命和 g 因子——后者具有前所未有的精度,这使得解决狭义相对论、电子相互作用和量子电动力学的效应成为可能,并澄清了不同理论预测之间的差异。所展示的概念普遍适用于高电荷离子。因此,这项工作开辟了高带电离子用于各种基础物理测试的潜力,用于探索未知物理(例如第五种力、基本常数的变化和暗物质)以及用于未来的光学原子钟。
主要关键词