从消费电子到电动汽车,电池在各个领域的重要性越来越重要,强调了精确电池模型的关键必要性。本评论描述了电池模型的四个主要类别:经验,等效电路,数据驱动和基于物理的模型。像Nernst和Shepherd模型这样的经验模型提供了简单性,但缺乏精确度。等效电路模型在简单性和准确性之间取得了平衡,尽管有验证约束。数据驱动的方法利用机器学习来准确预测电池性能,但需要高质量的数据集。基于物理学的模型集成了基本的电化学过程,以详细理解,尽管计算复杂性增强。比较分析以锂离子电池为重点,揭示了计算效率和准确性之间的权衡。具有电解质动力学的单个粒子模型及其扩展单粒子模型作为有效的选项出现,带有电解质动力学的单个粒子模型显示出有希望的精度,类似于单个粒子模型。此外,在不同的电池化学分子上进行比较,公布了不同水平的建模精度。本文比较了跨化学的不同电化学建模技术和辨别最佳方法。是电池建模技术之一的电化学模型,已在本研究中进行了详细研究和研究,并为文献提供了有关化学模型如何与哪种电化学模型一起使用的文献。此外,这项研究在Pybamm中使用优化技术有助于现有的铁磷酸锂化学建模。综合提供了对各种建模方法的见解及其对电池研究和开发的影响,从而指导未来的调查,以针对特定应用的更量身定制的建模策略。
最近的工作表明,可以通过合成神经辐射场渲染的特征来训练生成的对抗网络(GAN)从2D图像集合中生成3D内容。但是,大多数这样的解决方案都会产生光彩,并与材料纠缠在一起。这会导致不切实际的外观,因为照明无法更改,并且依赖视图(例如反射)的效果无法正确移动。此外,许多方法对于完整的360°旋转都很难,因为它们通常是专为面孔诸如面孔的主要场景而设计的。我们引入了一个新的3D GAN框架,该框架解决了这些缺点,允许多视图相干360◦查看,同时重新查看具有闪亮反射的对象,我们使用CAR数据集进行了体现。我们解决方案的成功源于三个主要贡献。首先,我们估算了最初的摄像头为汽车图像数据集,然后在训练GAN时学会完善相机参数的分布。第二,我们提出了一个有效的基于图像的照明模型,我们在3D GAN中使用该模型来产生分离的反射率,而不是在以前的大多数工作中合成的辐射。该材料用于使用环境图的数据集进行基于物理的渲染。第三,我们与以前的工作相比,我们改善了3D GAN体系结构,并设计了允许有效分解的仔细培训策略。我们的模型是第一个生成各种3D汽车一致的3D车,并且可以与任何环境图进行交互式保存。
人工智能(AI)和机器学习(ML)在地球物理学领域的迅速发展,创造了绘制和建模地球的新前景。这些数据驱动的方法是有用的辅助功能,尤其是在地球科学中基于物理的建模,仿真和反转的辅助功能。考虑到这一点,CSIR国家地球物理研究所(CSIR-NGRI)正在组织AI&ML的高级培训计划,以进行地球物理数据分析。该培训计划旨在使来自学术界和行业的国际/国家专业人员讨论机器学习的挑战,机遇和趋势以及对地球物理应用的人工智能。培训计划的重要结果是向学术和研发学院的参与者提供动手培训。
表示学习被广泛用于观察数据的因果量(例如,有条件的平均治疗效应)。尽管现有的表示学习方法具有允许端到端学习的好处,但他们没有Neyman-Ottrol-ottrodenal学习者的理论特性,例如Double Ro-Busberness和Quasi-Oracle效率。此外,这种表示的学习方法通常采用诸如平衡之类的规范约束,甚至可能导致估计不一致。在本文中,我们提出了一类新型的Neyman-Ottrodonal学习者,以在代表水平上定义的因果数量,我们称之为或称为校友。我们的旅行者具有几个实际的优势:它们允许基于任何学习的表示形式对因果量进行一致的估计,同时提供了有利的理论属性,包括双重鲁棒性和准门的效率。在多个实验中,我们表明,在某些规律性条件下,我们的或学习者改善了现有的表示学习方法并实现最先进的绩效。据我们所知,我们的或学习者是第一批提供代表学习方法的统一框架,而Neyman-ottrol-ottrodenal学习者进行因果量估计。
,我们建议符号回归是对标准模型以外的物理模型的数值研究的强大工具。在本文中,我们证明了该方法在基准模型上的功效,即受约束的最小超对称标准模型,该模型具有四维参数空间。我们提供了一组分析表达式,这些表达式在理论的参数方面重现了三个低能的观察结果:希格斯质量,对穆恩的异常磁矩的贡献以及冷暗物质依赖密度。为了证明该方法的功能,我们在全局拟合分析中采用了符号表达式来得出参数的后验概率密度,而这些概率密度比使用常规方法更快地获得了两个数量级。
建筑模拟工具在设计阶段经常用于尺寸设备并进行基于模拟的研究,以帮助估计年度能源使用或销售。对此类仿真研究的需求,再加上新设计方案(例如建筑电气化)的出现,促使创建基于高级物理的建筑模型。Modelica建筑物库(Wetter,Wangda Zuo,T。S. Nouidui等人等2014)是此类模型中最著名的集合之一,它可以模拟建筑信封和供暖,通风和空调系统的动态行为(Chakrabarty,Maddalena,Qiao等)2021; Zhan,Wichern,Laughman等。2022)。基于Modelica的工具在分析建筑物的性能方面具有明显的好处,因为它们促进了系统控制器设计(Wetter,Ehrlich,Gautier等人。2022)和现实的闭环控制性能(Stoffel,Maier,Kümpel等)2023)。尽管这种基于物理的模型模型可以有效地模拟建筑包膜的能量和传质过程,以及HVAC系统的热流体物理学,但还有其他一些过程会影响HVAC Sys-TEM会影响HVAC Sys-TEM的加热和冷却负载,而这些过程并非由人类而受到人为动作。建筑物乘员会产生并吸收潜在的,明智的和辐射的热量,其Ac-
超导磁性和超导性中量子磁杂质的动力学可能是物质的两个竞争阶段。但是,它们的相互作用可能导致物质的新外来阶段,例如拓扑超导性,一种能够藏有主要粒子的物质状态,这是他们自己的反粒子。作为拓扑超导性在本质上似乎并不那么频繁,一种策略是基于在超导底物上建立磁杂质(Fe,Co,Mn,Mn,…)的工程[1]。单个杂质与超导体之间的相互作用导致差距内局部和几乎极化的结合状态[2]。控制和功能化这些量子结合状态是拓扑超导性的途径,但也要实现Qubits [3]。磁杂质的大多数理论描述都依赖于经典的自旋模型,该模型简单地描述了激发光谱,但是人为地打破了时间反转对称性,并且无法正确重现基态退化。尽管许多实验性和理论作品已致力于磁性和超导性之间的相互作用,但几乎没有研究这些结合状态的动力学。由于外部驾驶对于实验探测动力学以及操纵系统拓扑阶段的工具很重要,因此非平衡理论将非常有价值。该提案是我们与实验者在研究原子规模旋转动力学的萨克莱高原上合作的一部分。17,384(2022)。Zhu,修订版在实习中,我们建议研究量子自旋杂质的简单模型的动力学,该模型与零波段极限中的超导底物相互作用[4]并受到时间相关的磁场。[1] L. Schneider等人,自然物理学17,943(2021);同上大自然纳米。[2] A. V. Balatsky,I。Vekhter和J.-X.mod。物理。78,373(2006)。[3] A. Mishra,P。Simon,T。Hyart和M. Trif,Yu-Shiba-Rusinov Qubit,Phys。修订版x Quantum 2,040347(2021)。[4] K. Franke和F. von Oppen,Phys。修订版b 103,205424(2021)。请,指出哪种专业(ies)似乎更适合于该主题:凝结物理物理学:是软物质和生物物理学:否量子物理学:是的理论物理学:是YES
摘要。我们提出了一种新颖的图像到视频生成方法,该方法将转换单个图像和输入条件(例如,将力和扭矩应用于图像中的对象),以产生一种现实,物理上合理的和时间一致的视频。我们的关键见解是将基于模型的物理仿真与数据驱动的视频通用过程集成,从而实现了合理的图像空间动力学。我们系统的核心是三个核心组成部分:(i)有效捕获图像的几何形状,材料和物理参数的图像理解模块; (ii)使用刚体物理和推断参数来模拟实体行为的图像空间动力学模拟模型; (iii)基于图像的渲染和完善模块,利用生成视频扩散来产生具有模拟运动的逼真的视频镜头。由此产生的视频在物理和外观上都是实现的,甚至是可控制的,从而通过定量比较和全面的用户研究来表现出优于现有数据驱动的图像到视频的效果。Physgen的结果视频可用于各种下游