I 1960 年激光的发明使得使用相干光源作为激光雷达发射器成为可能。相干激光雷达具有许多与更常见的微波雷达相同的基本特征。然而,激光极短的工作波长带来了新的军事应用,特别是在目标识别和导弹制导领域。本文追溯了林肯实验室从 1967 年到 1994 年的激光雷达发展历程。这项发展涉及两种激光雷达系统的构建、测试和演示——高功率、远程 Firepond 激光雷达系统和紧凑型短程红外机载雷达 (IRAR) 系统。Firepond 解决了战略军事应用,例如空间物体监视和弹道导弹防御,而 IRAR 则被用作机载探测和战术目标识别的试验台。吨
简介 风激光雷达在风力发电场场地评估等方面的应用近年来有所增加,这是准确性和可靠性提高的必然结果。激光雷达也正在成为主动涡轮机控制的工具 [1,2,3]。激光雷达在风速测量方面的一些优势在于它们可以进行远程测量,这意味着不需要高桅杆,并且可以轻松地从一个地点移动到另一个地点。这不仅适用于大气测量,还可用于风洞等,在风洞中,人们可以从几乎任何空间点的空间局部测量中受益,而不会干扰气流。然而,很少有研究报道将相干激光雷达技术应用于风洞环境。
图 1. 成像装置和物理训练装置。待成像的二聚体被放置在物体平面上,通过低数值孔径透镜 L1(NA=0.3)用波长为 λ = 795nm 的相干激光光源照射。在二聚体上衍射的光通过高数值孔径透镜 L2(NA=0.9)在距离二聚体 h = 2λ 处成像(a)。通过在玻璃基板上的铬膜上聚焦离子铣削制造 12 x 12 = 144 个二聚体狭缝组(b);二聚体的狭缝具有随机宽度 A 和 C,并且以距离 B 随机间隔。在每个二聚体附近制造一个方形对准标记(c)。记录在每个二聚体上衍射的相干光的强度图案。图 (d) 显示了 50λ 宽视场中二聚体的特征衍射图案。
缓解气候变化的紧迫性推动了科学研究和技术进步,以寻求可持续能源解决方案,将太阳能定位为最有前途的可再生资源之一,有助于减少对化石燃料的依赖。太阳泵浦激光器专门设计用于直接利用和转换部分太阳非相干辐射为相干激光,为环保激光技术的进步铺平了道路。近二十年前,我们里斯本新大学的研究团队开始研究这个课题,目标是显著提高太阳泵浦激光器的性能,他们的努力使我们处于该领域的前沿。本文重点介绍了我们的研究团队通过开创性实验使用 Ce:Nd:YAG 作为太阳能激光器的新型活性介质以及探索同时泵浦多种介质的创新方案所取得的这种可再生技术的最新进展。显著的进展包括为多模和基模模式创造了新的太阳激光效率记录,并实现了太阳激光发射的最低阈值泵浦功率。热管理和太阳跟踪误差补偿能力也取得了显著的进步,从而提高了激光器输出功率的稳定性。这些进展对于太阳泵浦激光器的实际应用至关重要。
利用相干电磁辐射对基本量子系统进行共振激发是许多物理学实验的核心,例如原子和分子光谱、原子钟、量子信息处理等。相干激光激发有许多应用,特别是需要高精度控制量子叠加态的频率或相位时,但迄今为止它在核物理中几乎没有使用[1]。从典型的核激发能量和可用的激光光子能量之间的巨大不匹配可以理解激光激发原子核的困难。核激发已经在激光产生的等离子体中得到证实,其中相互作用是通过在强激光场中加速的电子介导的,电子在碰撞中或通过X射线范围内的轫致辐射与原子核相互作用[2]。不同的原子核已经通过同步辐射在6 – 60 keV能量范围内的跃迁上进行共振激发,寿命在纳秒到微秒范围内[3]。 Sc-45 的 12.4 keV 共振最近在欧洲 x 射线自由电子激光器 [4] 上被激发,其寿命为 0.47 秒。Th-229 原子核以其独特的低能同质异能态而闻名 [5 – 7] 。其激发能量为 8.4 eV,使核跃迁处于真空紫外 (VUV) 光谱范围内,使其可用于台式激光系统和精密光学工具的实验
摘要 - 我们建议使用光子晶体表面发射激光器(PC-SELS)提出并演示自由空间光学(FSO)。与其他类型的常规半导体激光器不同,例如伸向边缘激光器(EEL)和垂直腔表面发射激光器(VCSEL),PCSELS,PCSELS在同一时间内实现了更大的区域单模式相干激光,并且这种独特的功能具有高功率(> WATT)和无镜头的操作。迄今为止,这些优点已被认为正在改变游戏,尤其是在光检测和范围(LIDAR)和激光处理应用程序中。在这项工作中,我们表明FSO通信也可以从PCSEL的这些优势中受益;更具体地,包括低功率半导体激光器,光学镜头和基于纤维的放大器的传统发射器可以用单个PCSEL代替。由于纤维放大器通常由笨重的组件组成,并且转化率较低,因此PCSEL可以提供更多的空间和节能解决方案。此外,直接从大区块单模PCSEL获得的窄光束发散角还可以消除发射机侧透镜系统的需求。为了实验验证这些潜在的优势,我们根据PCSELS进行了FSO传输实验,并使用500- m PCSEL在1.1 m上成功传输了480-MHz和864-MHz正交频次频施加频型(OFDM)信号(OFDM)信号。我们认为,PCSEL在FSO通信中打开了新的可能性和选择。
激光雷达(光检测和测距)技术有可能彻底改变自动化系统与其环境和用户的交互方式。当今行业中的大多数激光雷达系统都依赖于脉冲(或“飞行时间”)激光雷达,而这种激光雷达在深度分辨率方面已达到极限。相干激光雷达方案,例如调频连续波 (FMCW) 激光雷达,在实现高深度分辨率方面具有显著优势,但通常过于复杂、昂贵和/或体积太大,无法在消费行业中实施。FMCW 及其近亲扫频源光学相干断层扫描 (SS-OCT) 通常针对计量应用或医疗诊断,这些系统的成本很容易超过 30,000 美元。在本论文中,我介绍了我在芯片级光学和电子元件集成方面的工作,以应用于相干激光雷达技术。首先,我将总结将通常体积庞大的 FMCW 激光雷达控制系统集成到光电芯片堆栈上的工作。芯片堆栈由一个 SOI 硅光子芯片和一个标准 CMOS 芯片组成。该芯片用于成像系统,可在 30 厘米的距离内生成深度精度低至 10 微米的 3D 图像。其次,我将总结我在实施和分析一种新的 FMCW 激光雷达信号后处理方法方面的工作,称为“多同步重采样”(MK 重采样)。这涉及非线性信号处理方案下激光相位噪声的蒙特卡罗研究,因此我将展示随机模拟和实验结果,以证明新重采样方法的优势。QS 重采样有可能提高相干成像系统的采集率、精度、信噪比和动态深度范围。
富含血小板的血浆,也称为“ PRP”,是一种治疗方法,通过该治疗,一个人的血液被用作刺激组织再生的生长因子和细胞因子(信号蛋白)的来源。研究科学家在富含血小板的血浆中发现了一组称为非常小的胚胎(VSEL)干细胞的干细胞的存在。建议以与胚胎干细胞相同的方式,VSEL干细胞是“组织形成”干细胞,因此理论上能够使任何不同的组织和人体的任何不同的组织和细胞。在循环血液中发现了VSEL干细胞,但在正常情况下它们似乎在生物学上是无活跃的。人们认为,VSEL干细胞可能是活跃于发育中的胎儿的生物学发展的残余,但在出生后不久和人类的余生就变得不活跃。研究指出,分离这些VSEL干细胞的最佳和最简单方法是从静脉收集外周血并在离心机中处理血液,以产生一小部分血液富含血小板的血浆(PRP)。PRP馏分已知不仅包含大量的血小板,各种不同的生长因子和细胞因子,还包含VSEL干细胞。研究人员报告说,VSEL干细胞在生物学上似乎是无活跃的。研究医生Todd Ovokaitys博士报告说,可以通过应用调制红外相干激光来激活VSEL干细胞。将活化的VSEL干细胞返回到通过注射到特定解剖部位收获血液的个体时,例如,膝关节或重新注入静脉,起着个体活性干细胞的作用。
光子综合电路(图片)对于现代数据中心内的数据传输是必不可少的,并且传统上遍布多个应用程序领域,限于散装光学元件,例如LIDAR和BIOSESENT。薄膜硅锂(LNOI)的最新进展显示了LNOI综合光子电路的主要潜力,这些电路表现出强大效应,从而实现了超快和有效的电流调制,但难以通过干蚀刻来处理。出于这个原因,不可能蚀刻紧密的封闭波导 - 通常在硅或氮化硅中实现的 - 这阻碍了材料向商业铸造厂的过渡。虽然硅或磷化物的发育良好,但在欧洲提供了许多商业铸造厂,提供PDK(工艺设计套件),但尼橙色锂的图片并非如此。使用钻石样碳(DLC)的新型制造过程,EPFL的最新进展克服了这一挑战。dlc在1950年代被发现,是一种具有出色硬度的无定形材料,并且能够沉积在纳米薄膜中。使用DLC作为硬面膜,EPFL表现出可靠的蚀刻,紧密限制和低损失图片的可靠制造,损失低至5 dB/m。这种制造方法可以预示新一代紧密限制的Niobate光子集成电路,尤其是用于在基于相干激光的射程,波束成形,光学通信或新兴经典和量子计算网络中的应用。该项目将该制造过程转变为Luxtelligence SA,并开发具有关键构件的工艺设计套件(PDK),特别是高速低压调节器,旨在成为欧洲第一个商业纯式纯种型铸造厂,并将lithium niobate Niobate Niobate niobate集成的光子循环访问。该项目的重点是关键技术,例如波导蚀刻和电极处理,并演示了PDK库中的基本组件,例如波导和电形相位变速器。