简介。— 令 ðð n; K; d ÞÞ 表示一个 n 量子比特量子纠错码,其代码空间维度为 K,距离为 d 。Eastin-Knill 定理 [1] 表明,当代码非平凡(d ≥ 2)时,SU ð K Þ 中可以横向实现的逻辑运算始终是有限子群 G ⊂ SU ð K Þ 。如果逻辑门 g 可以实现为 U 1 ⊗ ⊗ U n ,其中每个 U i ∈ U ð 2 Þ ,则称其为横向门。横向门被认为具有天然容错性,因为它们不会在物理量子比特之间传播错误。我们的重点是将单个逻辑量子比特编码为 n 个物理量子比特(K ¼ 2)。在这种情况下,Eastin-Knill 定理表明横向门必须是 SU(2) 的有限子群。SU(2) 的有限子群是循环群、双循环群和三个例外群。我们主要对三个例外群感兴趣:二元四面体群 2T、二元八面体群 2O 和二元二十面体群 2I。这三个群分别对应于四面体、八面体和二十面体的对称群通过双覆盖 SU ð 2 Þ → SO ð 3 Þ 的提升(见图1 )。有关 SU(2) 的有限子群的更多信息,请参阅补充材料 [2] 。群 2O 更广为人知的名字是单量子比特 Clifford 群 C 。许多代码横向实现 2O,例如 ½½ 7 ; 1 ; 3 Steane 代码和 ½½ 2 2 r − 1 − 1 ; 1 ; 2 r − 1 量子穿孔 Reed-Muller 代码。更一般地,所有双偶自对偶 CSS 代码都横向实现 2O。群 2T 是 Clifford 群的一个子群,还有许多代码具有横向门群 2T,最著名的例子是 ½½ 5 ; 1 ; 3 代码。与此形成鲜明对比的是,没有代码被明确证明可以横向实现 2I。考虑到 2I 在 [32] 中提出的“最佳绝对超金门集”中的作用,这一遗漏尤其明显,该集是最佳单量子比特通用门集。