三十多年来,材料四面体以其相互依存的加工、结构、特性和性能元素抓住了材料科学与工程的本质。随着现代计算和统计技术开创了数据密集型科学研究和发现的新范式,材料科学与工程领域利用这些进步的速度取决于众多利益相关者之间的合作。在这里,我们通过双重框架对经典材料四面体进行了现代扩展——改编自“数字孪生”的概念——它提供了连接材料科学和信息科学的纽带。我们相信,这个高级框架,即材料信息孪生四面体 (MITT),将为利益相关者提供一个平台,以情境化、转化和指导推动材料科学和技术向前发展的努力。
摘要。概率降级扩散模型(DDMS)为2D图像生成设置了新标准。扩展3D内容创建的DDMS是一个积极的研究领域。在这里,我们提出了四个扩散模型,该模型在3D空间的四面体分区上运行,以实现有效的高分辨率3D形状生成。我们的模型会导致运算符进行卷积和转置卷积,该卷积直接作用于四面体分区,并且无缝包含诸如颜色之类的其他属性。我们的设计更加生成网状几何形状:与现有的网格扩散技术相比,四辐射的速度更快到200倍。同时,它可以减少内存消耗,并且可以比现有网格发电机以更高的分辨率运行。仅使用标准消费者硬件,它在空间细节方面设置了一个新的标准,并在一系列质量指标上优于其他网格发电机。有关其他结果和代码,请参见我们的项目页面tetradiffusion.github.io。
TetGen 是一个 C++ 程序,用于生成高质量的四面体网格,旨在支持数值方法和科学计算。高质量四面体网格生成问题面临许多理论和实践问题的挑战。TetGen 使用基于 Delaunay 的算法,该算法具有理论上的正确性保证。它可以稳健地处理任意复杂的 3D 几何形状,并且在实践中速度很快。TetGen 的源代码是免费提供的。本文介绍了开发 TetGen 的基本算法和技术。目标读者是网格生成或其他相关领域的研究人员或开发人员。它描述了 TetGen 的关键软件组件,包括高效的四面体网格数据结构、一组增强的局部网格操作(翻转和边缘去除的组合)和过滤的精确几何谓词。关键算法包括用于插入顶点的增量 Delaunay 算法、用于插入约束(边和三角形)的约束 Delaunay 算法、用于恢复约束的新型边恢复算法以及用于自适应质量四面体网格生成的新型约束 Delaunay 细化算法。给出了实验示例以及与其他软件的比较。
摘要。我们通过进一步研究我们之前工作中的量子簇代数方法,构造了四面体方程的新解。关键要素包括连接到 A 型 Weyl 群最长元素接线图的对称蝴蝶箭筒,以及通过 q-Weyl 代数实现量子 Y 变量。该解决方案由四个量子双对数的乘积组成。通过探索坐标和动量表示及其模数双反,我们的解决方案涵盖了各种已知的三维 (3D) R 矩阵。其中包括 Kapranov–Voevodsky (1994) 利用量化坐标环获得的矩阵、从量子几何角度获得的 Bazhanov–Mangazeev–Sergeev (2010)、与量化六顶点模型相关的 Kuniba–Matsuike–Yoneyama (2023) 以及与 Fock–Goncharov 箭筒相关的 Inoue–Kuniba–Terashima (2023)。本文提出的 3D R 矩阵为这些现有解决方案提供了统一的视角,并将它们合并在量子簇代数的框架内。
a 马德里自治大学 (UAM) 分析化学与仪器分析系,28049,马德里,西班牙 b 微纳米技术研究所 IMN-CNM,CSIC (CEI UAM + CSIC),28760,Tres Cantos,马德里,西班牙 c 马德里自治大学无机化学系和凝聚态物理中心 (IFIMAC),28049,马德里,西班牙 d 马德里自治大学化学科学高级研究所 (IAdChem),28049,马德里,西班牙 e IMDEA-Nanociencia,Ciudad Universitaria de Cantoblanco,28049,马德里,西班牙 f 拉蒙·卡哈尔大学医院微生物学服务中心和拉蒙·卡哈尔健康研究所 (IRYCIS),28034,西班牙马德里 g 西班牙马德里卡洛斯三世卫生研究所传染病网络生物医学研究中心 (CIBERINFEC) h 西班牙马德里流行病学和公共卫生网络生物医学研究中心 (CIBERESP)
我们在Co K-边缘上呈现理论XANES光谱,并结合DFT+U计算,以研究CO 3 O 4正常尖晶石的电子和磁性特性和镍掺杂系统CO 3 -x Ni X O 4。已经考虑了镍掺杂系统的两种配置:一个镍原子分别替换为四面体和八面体钴的配置。CO K-GEDGE-XANES频谱在CO 3 O 4正常尖晶石中显示了两个预峰,而在掺杂系统的情况下只观察到一个预峰。我们将掺杂系统中一个预峰的失望归因于向四面体钴3 d空状态的高能转移。我们证明,镍掺杂导致四面体钴的氧化态略微增加,而八面体钴的氧化态几乎保持不变。此外,镍在代替八面体钴时会产生磁化,并有助于渲染Co 3 O 4一个半金属系统,而当镍替代四面体钴时,这种磁化会降低。
使用十二烷基硫酸钠(SDS)和高纯度分析级硝酸盐,通过化学共沉淀法在控制温度下合成磁钴铁素纳米颗粒(NP)。合成的材料的特征是研究的X射线衍射(XRD),扫描电子显微镜(SEM)和傅立叶变换红外辐射(FTIR)技术。样品在850 0 c烧结5H。X射线衍射分析证实了用公式AB 2 O 4的单相立方尖晶石结构的形成。在四面体(A位点)和八面体(a-o,b-o)上的晶格常数,X射线密度,结晶石大小,位置半径(R a,r b),键长(A-O,B-O)上的四面体(A位点)和八面体(b site)在样品中计算出来。晶格常数和结晶石尺寸分别为8.361 A 0和27 nm。FTIR光谱在四面体和八面体部位分别在400 cm -1和800 cm -1的范围内显示了两个强吸收带。SEM研究表明,平均晶粒尺寸为0.25 µm,几乎是球形形状的微结构钴铁氧体纳米粒子。关键字:化学合成,纳米颗粒,结晶石大小,XRD,FT-IR,SEM。1。简介:铁磁性材料含有一种称为铁氧体的氧化铁。铁素体具有一个立方尖晶石相,具有通用式AB 2 O 4,其中A是二价金属离子,例如Ni,Zn,Mn,Mn,Cu,Ca,Ca,Co,Mg,Mg和B是Fe,Sm,sm,sm,gd,la,ce,等等的三价金属离子。该结构中氧离子的排列提供了四面体(a)和八面体(b)位点。许多阳离子优先占据了其中一个位置。居住在8个四面体和16个八面体位置的阳离子在铁氧体的独特特征中具有重要作用。由于现代社会不断增长的需求,铁矿的微波特性现在需求很高。钴铁矿是微波工业中最常使用的材料,因为它们的高化学稳定性,机械品质,低成本和易于制造。他们的一般化学公式(AB 2 O 4)具有逆尖晶石结构,其一半占据了四面体A位点的铁离子,其余的以及钴离子,分布在八面体B点上。钴
非常规的铁电性型植物结构氧化物由于其出色的可伸缩性和硅兼容性而在纳米电子学上带来了巨大的机会。然而,由于可视化纳米晶体中的氧离子的挑战,它们的极化顺序和开关过程仍然难以捉摸。在这项工作中,极化开关和相关的极性 - 尖端相变中的氧转移在独立式ZRO 2薄膜中直接捕获在多个可稳态的相之间,而低剂量综合差异差异差相对比扫描传输电子(IDPC-STEM)。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。 同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。 这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。在抗fiferroeleelectric和铁电顺序与界面极化弛豫之间的双向转变在单位细胞尺度上进行了澄清。同时,极化切换与单斜骨和正骨相之间的可逆Martensenitic转化以及两步的四面体到四面体到正常相变的ZR – O位移密切相关。这些发现提供了对亚稳态多晶型物之间的过渡途径的原子见解,并揭示了(抗)铁电氟氧化物中极化顺序的演变。
原子特征 大小(38) 描述 原子符号 11 [UNK、H、C、N、O、F、P、S、Cl、Br、I] (one-hot) 键度 6 共价键数 [0、1、2、3、4、5] (one-hot) 形式电荷 7 [-3、-2、-1、-0、1、2、3] (one-hot) 杂化 8 [未指定、s、sp、sp2、sp3、sp3d、sp3d2、其他] (one-hot) 手性 4 [未指定、四面体 CW、四面体 CCW、其他] (one-hot) 环 1 原子是否在环中 [0/1] (one-hot) 芳香性 1 原子是否属于芳香系统 [0/1] (one-hot) 键特征 大小(12) 描述 键类型 4 [单键、双键、三键、芳香] (one-hot) 共轭1 键是否为共轭键 [0/1] (one-hot) 环 1 键是否在环中 [0/1] (one-hot) 立体类型 6 [StereoNone, StereoAny, StereoZ, StereoE, Stereocis, Stereotrans] (one-hot)
使用延长的心脏扭力(XCAT)图像开发了男性和女性热调节模型,该模型是美国成年人中位数的图像,从体素数据分割为CAD模型,并将最终的四面体网格进口到Comsol Multiphysics软件中,并使用620万个四面体元素进口[1,2]。网格分为13个组织和器官,包括皮肤,脂肪,肌肉,骨骼,眼睛,肝脏,胃,肺,心脏,肾脏,肾脏,膀胱,肠,肠和大脑(图1)。指定了进口的网格组件,其属性是用于温度调节的属性,包括温度电阻率,电导率,特定的热容量和初始温度条件。使用Comsol的Bio-Heat传输模块的模型。表面上的空间温度分布由生物热传递方程(被动系统)[等式1]和通过下丘脑(活动系统)的误差信号对热调节的传出系统响应确定。