37 Langway(1958; 1967)。 38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -37 Langway(1958; 1967)。38 Langway(1967,p。7)。 39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -38 Langway(1967,p。7)。39 Martin-Nielsen(2016年,第95页)。 40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。 41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -39 Martin-Nielsen(2016年,第95页)。40在格陵兰(美国)科学研究的地缘政治方面,请参见Doel,Harper和Heymann(2016)。41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。 42“冰盖”是大于50,000 km 2的圆顶冰川。 这种类型的冰川仅存在于格陵兰和南极。 43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。 (2010年,第33页)。 有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。 86 - 100)。 44 Martin-Nielsen(2013年,第 87 - 88)。 45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。 (1958年1月28日),给威利·丹斯加德的信; Renaud,A。 ([[1962年11月]),Egig 1957 -41 Haefeli(1959); Finsterwalder的引号(1959年,第542页)。42“冰盖”是大于50,000 km 2的圆顶冰川。这种类型的冰川仅存在于格陵兰和南极。43丹麦政府安装了这样的政府观察员或“联络官”,以观察格陵兰的外国活动:Heymann等。(2010年,第33页)。有关Egig的更多详细信息,请参见Martin-Nielsen(2013,pp。86 - 100)。44 Martin-Nielsen(2013年,第87 - 88)。45 Dansgaard,W。(1958年1月27日),致BørgeFristup的信; Fristup,B。(1958年1月28日),给威利·丹斯加德的信; Renaud,A。([[1962年11月]),Egig 1957 -
摘要:诸如玻璃,聚合物和无定形合金之类的无定形材料具有广泛的应用,从日常生活到极端条件,由于它们在弹性,强度和电阻率方面具有独特的特性。对无定形材料原子结构的更好理解将为其进一步的工程和应用提供宝贵的信息。然而,在实验上确定无定形材料的三维原子结构是一个长期的问题。由于原子布置无序,无定形材料在远程规模上没有任何翻译和旋转对称性。常规表征方法,例如散射和显微镜成像,只能提供在宏观区域上平均的统计结构信息。无定形材料的3D原子结构的知识有限。最近的原子分辨率电子断层扫描(AET)已证明是一种越来越强大的原子尺度结构表征的工具,而无需任何晶体假设,这为确定各种无定形材料的3D结构打开了一扇门。在这篇综述中,我们总结了过去几十年来探索无定形材料原子结构的最新特征方法,包括X射线/中子衍射,纳米梁和Angstrom-Beam电子衍射,波动电子显微镜,高分辨率扫描/传输电子显微镜和Atom tomography。从实验数据和理论描述中,已经建立了各种无定形材料的3D结构。特别是,我们介绍了AET的原理和最新进展,并突出了AET最新的开创性壮举,即,在多组分玻璃合金中对所有3D原子位置的首次实验确定,在多型玻璃合金中和3D原子包装中的无相固体固体中的3D原子包装。我们还讨论了表征无定形材料中化学和结构缺陷的新机会和挑战。
病原性冠状病毒是对全球公共卫生的主要威胁,例如严重的急性呼吸综合症冠状病毒(SARS-COV),中东呼吸综合症冠状病毒(MERS-COV)和新出现的SARS-COV-2,是冠心病2019(Covirus 2019)(Covirus nipery 2019)。我们在本文中描述了冠状病毒3C样蛋白酶(3CLPRO)的一系列抑制剂的结构引导优化,这是一种对病毒复制必不可少的酶。优化化合物在酶测定中使用HUH-7和VERO E6细胞系中的几种人冠状病毒和基于细胞的测定中的几种人冠状病毒有效。两种选定的化合物在培养的原代人气道上皮细胞中显示出对SARS-COV-2的抗病毒作用。在MERS-COV感染的小鼠模型中,病毒感染后1天的铅化合物从0增加到100%,并减少了肺病毒滴度和肺部组织病理学。这些结果表明,这一系列化合物有可能进一步发展为针对人冠状病毒的抗病毒药物。
摘要研究了一种具有预设计的孔特性的三维晶格羟基磷灰石支架,研究了一种基于水性的挤出制造(ABEF)。通过0.8毫米喷嘴挤出了基于水的羟基磷灰石糊,并根据计算机辅助设计(CAD)文件在室温下逐层沉积。使用数字显微镜表征了绿体和烧结体的形态。使用XRD分析相纯度。傅立叶变换红外光谱(FTIR)。当前的研究证实了产生三维晶格羟基磷灰石支架的可能性,而没有任何杂质,如XRD和FTIR技术所示。结构化大量羟基磷灰石生物陶瓷的形态分析显示互连的宏孔和微孔。它将有可能在毛孔中定植成骨细胞,纤维血管向内生长,最后是新骨形成的沉积。
数字制造技术在制造业迅速变得无处不在。通常称为第四次工业革命或行业4.0的转型已迎来了广泛的通信技术,连接机制和数据分析功能。这些技术提供了强大的工具来创建更精益,有利可图和数据驱动的制造过程。本文回顾了现代通信技术和数字制造和行业4.0应用程序的连接体系结构。对网络物理系统的介绍以及对数字制造趋势的审查,然后概述用于制造过程的数据采集方法。为连接不同的机器和流程提供了许多通信协议。讨论了灵活的数据架构,并提供了机器监视实现的示例。最后,对这些通信协议和体系结构的选择实现进行了调查,并为将来的体系结构实现提供了建议。关键字:工业4.0,物联网,工业物联网,数字制造,通信技术
