串扰现象是由于两条线路之间的耦合引起的。当线路间隙减小时,耦合系数(β 12 或 β 21)会增加,尤其是在硅片中。在图 13 的示例中,负载 R L2 上的预期信号为 α 2 V G2 ,实际上此时的实际电压有一个额外的值 β 21 V G1 。V G1 信号的这一部分表示线路 1 的串扰现象对线路 2 的影响。当驱动器在干扰线路中施加快速数字数据或高频模拟信号时,必须考虑这种现象。如果受干扰线路使用低压信号或高负载阻抗(几 k Ω),则受干扰线路会受到更大的影响。以下部分给出了数字和模拟串扰的值。
示例 2 • 一个电池的开路电压 (V oc ) 等于 0.6 V ;3 个电池的并联将提供 0.6 V 的开路电压 (V oc )。 • 6 英寸单晶电池的短路电流 (I sc ) 等于 9.97 A ;3 个电池的并联将提供 29.91 A 的短路电流 (I sc )。 • 一个模块(例如,在 STC 条件下额定功率为 300 W 的 60 个单晶 6 英寸电池)的开路电压 (V oc ) 为 39.4 V ;3 个模块的并联将提供 39.4 V 的开路电压 (V oc )。 • 一个模块(例如,在 STC 条件下额定功率为 300 W 的 60 个单晶 6 英寸电池)的短路电流 (I sc ) 等于 9.97 A; 3 个模块的并联将提供 29.91 A 的短路电流 (I sc )。• 20 个模块的串(例如,60 个单晶 6 英寸电池,在 STC 条件下额定功率为 300 W)的开路电压 (V oc ) 为 788 V;3 个串的并联将提供 788 V 的开路电压 (V oc )。• 20 个模块的串(例如,60 个单晶 6 英寸电池,在 STC 条件下额定功率为 300 W)的短路电流 (I sc ) 等于 9.97 A;3 个串的并联将提供 29.91 A 的短路电流 (I sc )。
算法交易和强化学习的结合,即所谓的人工智能交易,对资本市场产生了重大影响。本研究利用信息不对称的知情投机者之间的不完全竞争模型,探讨人工智能交易策略对投机者的市场力量、信息租金、价格信息量、市场流动性和错误定价的影响。我们的结果表明,知情的人工智能投机者即使“不知道”串谋,也可以自主学习采用串谋交易策略。这些串谋策略使他们能够通过策略性地对信息反应不足来实现超竞争交易利润,即使没有任何形式的协议或沟通,更不用说可能违反传统反垄断法规的互动了。算法串谋来自两种不同的机制。第一种机制是通过采用价格触发策略(“人工智能”),而第二种机制源于同质化的学习偏差(“人工愚蠢”)。前一种机制仅在价格效率有限和噪音交易风险的情况下才会显现。相反,后者即使在价格效率高或噪音交易风险大的情况下也会持续存在。因此,在人工智能交易盛行的市场中,价格信息量和市场流动性都会受到影响,反映了人工智能和愚蠢的影响。
据美国检察官杰拉德·M·卡拉姆称,起诉书指控,2003 年至 2014 年间,时任钱伯斯堡莱特肯尼军需品仓库公共工程局工程规划处处长的科卡尼亚与一些未具名的同谋者合作,破坏了美国小企业管理局 8(a) 商业发展计划的规则和目的。据称,科卡尼亚将联邦政府合同转交给 8(a) 计划的某些参与者,明知这些公司及其现有员工(如果有的话)在履行授予他们的合同方面没有发挥任何有意义的作用。
卡森、海耶斯和弗洛雷斯被判犯有串谋诈骗美国和重大欺诈罪。这些人因串谋诈骗美国而面临最高五年监禁和 25 万美元罚款,或两倍于金钱收益或损失的罚款。重大欺诈的最高刑罚是 10 年监禁和 100 万美元罚款,或者,如果政府的总损失或被告的总收益为 50 万美元或以上,则罚款 500 万美元。
Gore 将其 Cat6a 电缆与几种领先的替代电缆进行了比较。GORE ® 以太网电缆(4 对)性能的提高直接转化为更可靠的数据传输,插入损耗与串扰比大大提高(图 7)。这些电缆的出色性能为克服安装问题和操作挑战提供了额外的余地。同样,结果还表明,与其他电缆相比,Gore 独特的电缆设计可以在 500 MHz 时将串扰降低 10 dB 以上(图 8)。
摘要 — 空分复用是一种广泛使用的技术,可提高无线和光通信系统中的数据传输能力。然而,紧密排列的空间信道会引起严重的串扰。高数据速率和大通道数对使用传统数字信号处理算法和电子电路解决串扰提出了严格的限制。为了解决这些问题,本文提出了一种将高速硅光子器件与新型盲源分离 (BSS) 算法相结合的硅光子系统。我们首先演示了如何使用光子 BSS 消除用于数据中心内通信的短距离多模光纤互连中的模态串扰。所提出的光子 BSS 系统继承了光子矩阵处理器的优势和 BSS 的“盲性”,从而实现了卓越的能源和成本效率以及更低的延迟,同时允许使用亚奈奎斯特采样率和在自由运行模式下恢复信号,并在信号格式和数据速率方面提供无与伦比的灵活性。最近,人们已经证明了使用光子处理器进行模式串扰均衡的可行性,并借助训练序列。相比之下,我们的方法光子 BSS 可以解决更困难的问题,即使接收器对任何数据速率和调制格式透明,并且适用于速度慢且经济高效的电子设备。在
摘要基于碳纳米 - 互连进行比较无线电频率(RF)和串扰分析,该互连是基于有效的π-类型等效的多壁碳纳米管(MWCNT)和堆叠的多层含量nanoribbons(MWCNTS)和堆叠的多层含量的nanoribbons(mwcnts)。使用HSPICE在14 nm节点处使用HSPICE进行全局级纳米互连提取。RF性能,而串扰性能是根据串扰诱导的延迟和平均功耗来分析的。与CU,纳米管和MWCNT相比,皮肤深度的结果表明,对于ASF 5掺杂的Zag ZAG MLGNR,在较高频率下,皮肤深度降解的显着明显影响。转移增益结果明确表明,ASF 5掺杂的MLGNR表现出极好的RF行为,分别显示出比MWCNT和铜(CU)的10倍和20倍的改善。此外,与Cu和MWCNT相比,ASF 5掺杂的MLGNR的3 dB带宽计算表明18.6-和9.7倍倍增强。在ASF 5掺杂的MLGNR的串扰诱导的相位延迟中获得了显着的重新构度,其延迟值比CU和MWCNT的延迟值低84.7%,比60.24%。此外,ASF 5-掺杂的MLGNR呈现最佳能量 - 延迟产品的结果,其值比其CU和MWCNT对应物的98.6%和99.6%的改善,全球长度为1000 µm。
肿瘤微环境 (TME) 是一个由细胞、信号分子和细胞外基质成分组成的复杂生态系统,对癌症进展有重大影响。在 TME 的关键参与者中,癌症相关成纤维细胞 (CAF) 因其多样化和影响力的作用而受到越来越多的关注。CAF 是活性成纤维细胞,在各种癌症类型的 TME 中大量存在。CAF 通过促进血管生成、重塑细胞外基质和调节免疫细胞渗透,对肿瘤进展有重大贡献。为了影响微环境,CAF 通过旁分泌信号和直接细胞间相互作用与免疫细胞、癌细胞和其他基质成分进行串扰。这种串扰可导致免疫抑制、肿瘤细胞增殖和上皮-间质转化,从而导致疾病进展。新兴证据表明,CAF 在治疗耐药性(包括对化疗和放疗的耐药性)中起着至关重要的作用。CAF 可以通过分泌促进药物作用、增强 DNA 修复机制和抑制细胞凋亡途径的因子来调节肿瘤对治疗的反应。本文旨在了解 CAF 在 TME 内的多方面功能,讨论 CAF 与其他 TME 细胞之间的串扰,并阐明 CAF 对治疗耐药性的贡献。靶向 CAF 或破坏其与其他细胞的串扰有望克服药物耐药性并提高各种癌症类型的治疗效果。