3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
该 MPTEM 涉及实现一种新颖的电子光学元件——门控镜,用于将电子输入和输出耦合到多通成像系统。通过快速降低电位(“打开”状态),门控镜将作为透镜工作,并且电子可以输入到 MPTEM。然后可以提高电位(“关闭”状态),门控镜现在作为反射元件工作。可以再次降低电位,将电子输出耦合。我们的设计是一个机械对称的五电极透镜,具有两个外电极、两个内电极和一个中心电极。参见图 1 中的机械加工原型。每个电极将保持在独立于其他电极的静态直流电压下,并在中心电极上施加门控脉冲。中心电极和内电极(每侧)之间的电容约为 5 pF,内电极和外电极之间的电容约为 10 pF。同心真空室将每个电极大约 2 pF 的电容引入地。该门控镜对电压有严格的要求:理想情况下,门控镜将由完美的箱车脉冲串驱动,并始终处于完全打开(透镜)状态或完全关闭(镜子)状态。当然,这需要完美的电响应和无限的驱动电子设备带宽。实际上,需要容忍有限的上升时间和有限的脉冲平坦度。上升和下降时间要求由往返时间≳10 ns 给出。我们的初步目标是实现≤3 ns的上升和下降时间。平坦度要求来自色差考虑。我们的目标是将门控镜对色差的贡献保持在与电子源中的能量扩散引入的色差大致相同的数量级 [8]。因此,目标是在最终的 100 V 驱动电压下实现优于 1 V 的脉冲平坦度,或在我们的台式测试中实现峰峰值电压的 1%。请注意,此平坦度目标不仅适用于用于电子传输的脉冲顶部,还适用于尾部
经颅磁刺激(TMS)产生非侵入性脑刺激,以探测大脑内神经生理过程1。tms脉冲通过将强电流流过TMS线圈绕组而引发。电流诱导电子场是一个时变的磁场,它不受阻碍地穿透头皮和头骨。和大脑中诱导的涡流可以去极化神经元。e-ebient迅速变化。TMS的脉冲持续时间短,脉冲持续时间为1-3 T,上升时间约为50-100μs,TMS具有亚毫秒的时间分辨率,可以实时调节大脑。浅表皮质层比更深的层更强烈地模拟,因为磁场的结果随距离迅速减弱,并且诱导的电子场在头部中心接近零。但是,在通过TMS应用足够的刺激强度(SI)时,诱发的动作电位可能会沿局部局部沿着同一皮质柱和其他皮质和皮层下区域内的皮质层的解剖连接传播,并可能导致整个网络2的激活2。脑电图(EEG)通过测量毫秒的时间分辨率和厘米的空间分辨率研究了大脑中的电生理动力学,通过测量突触后电位的电势差异,而不是放置在头皮2上的电极之间的动作电位的差异。TMS-EEG数据从脑电图响应中得出的数据可用作皮层中兴奋性或连通性的神经生理标记。TMS-EEG数据从脑电图响应中得出的数据可用作皮层中兴奋性或连通性的神经生理标记。与其他可以记录TMS唤起神经活动的神经影像技术(例如fMRI,近红外光谱)(NIR)和PET相比,脑电图是最成功,最常用的组合,由于其廉价和简单性与在线与TMS 2结合。TMS-EEG能够通过测量TMS脉冲对脑电图的影响以及在频域中进一步研究的相关行为效应来操纵和研究脑节律。
EPRI EMP 报告和电网安全:关键信息背景 4 月 30 日,电力研究所 (EPRI) 将发布其最新电磁脉冲 (EMP) 报告的结果,题为《高空电磁脉冲和大容量电力系统》。该研究重点关注单次高空核爆炸产生的 E1、E2 和 E3 EMP 的潜在综合影响。该研究还确定并测试了 E1 EMP 影响的潜在缓解方案。这是 EPRI 的第三份也是最后一份报告,重点关注高空电磁脉冲 (HEMP) 对大容量电力(或电力传输)系统的潜在影响。主要合作者包括美国能源部、劳伦斯利弗莫尔国家实验室、桑迪亚国家实验室、洛斯阿拉莫斯国家实验室、国防威胁降低局和电力部门协调委员会。地球大气层之上的核爆炸会将电磁能量推向地表,产生一个初始的、持续时间短的脉冲,上升时间为 2.5 亿分之一秒 (E1);一个中间脉冲,其特征类似于附近雷击引起的脉冲 (E2);以及一个可能持续数分钟的晚期脉冲,类似于太阳耀斑引起的严重地磁扰动 (E3)。每种类型的脉冲都会对电子设备造成不同的物理影响。EPRI 的第一份 EMP 报告于 2017 年 2 月发布,重点关注 E3 以及单次 HEMP 事件对大型电力变压器造成热损坏的可能性。研究结果表明,只有“少数地理上分散的变压器存在潜在的热损坏风险”。第二份报告于 2017 年 12 月发布,研究了 E3 是否可能导致电压崩溃。研究结果表明,E3 可能导致电压崩溃,但“仅由晚期脉冲或 E3 导致的服务中断将仅限于区域层面,不会引发全国性电网故障。”该研究还得出结论,潜在影响可以减轻。这份关于 E1、E2 和 E3 对架空输电线、变电站和开关站的潜在综合影响的新报告显示,初始 E1 和晚期 E3 脉冲可能会引发区域服务中断,但不会引发全国性电网故障。EPRI 得出结论,“恢复时间预计与其他极端事件导致的大规模电力中断相似,前提是采取针对
描述:leveriDys(Delandistrogene moxeparvovec-rokl)是一种基于腺相关病毒载体的基因疗法,用于治疗4至5岁年龄的卧床儿科患者。它旨在传递编码微肌营养蛋白的基因。由leveridys表达的微型链霉素是一种缩短版本,其中包含在正常肌肉细胞中表达的肌营养不良蛋白的选定结构域。该药物经加速批准批准,该药物允许替代终点(微肺炎水平)用于严重疾病,其中未满足治疗的需求。levidys的加速批准是基于两项正在进行的临床研究(研究102和研究103)的数据以及三项正在进行的试验的安全数据(研究101,研究102和研究103)。研究102是一个多中心三部分的2阶段研究,研究3是一项两部分的开放标签1期研究,在五个由年龄和卧床状态定义的DMD的男孩中。For the subset of patients 4-5 years of age who received the FDA approved dosage of Elevidys, the mean change from baseline in Elevidys micro-dystrophin expression levels at Week 12 following Elevidys infusion was 95.7% (n=3; standard deviation [SD]: 17.9%) in Study 102 Parts 1 and 2, and 51.7% (n=11; SD: 41.0%) in Study 103 Cohort 1。leverdys并未证明对功能结果具有统计学意义的治疗作用。然而,与安慰剂在北极星门诊评估(NSAA)的变化中,对16名参与者的探索性亚组分析(levidys:n = 8;安慰剂:n = 8)4至5岁,显示了leverbo的数值优势。2024年6月21日,FDA将加速的批准转化为Elevidys(Delandistrogene Moxeparvovec-Rokl),以完全批准,以治疗4岁及4岁以上年龄的Duchenne肌肉营养不良的卧床患者。该机构还批准了非注重患者的leverdys的批准。第三阶段的踏板研究正在作为评估临床益处的验证性试验。2023年10月30日,Sarepta宣布了Topline的结果,Embark招募了125名DMD患者4-7岁的DMD患者。主要终点没有得到满足,因为NSAA的总分从第52周的基线变化(经过高甲基治疗的患者为2.6分,而在安慰剂治疗中为1.9点)没有达到统计学意义(n = 125,p = 0.24)。关键的次要终点,包括上升时间(TTR)和10米步行测试,显示出统计上的
适用于高可靠性应用的高压 GaN HEMT 现提供 15 A 和 30 A 低电流版本 加利福尼亚州米尔皮塔斯 – 2021 年 1 月 6 日 – Teledyne e2v HiRel 正在为其基于 GaN Systems 技术的业界领先的 650 伏高功率产品系列添加两款新型加固型 GaN 功率 HEMT(高电子迁移率晶体管)。两款新型高功率 HEMT TDG650E30B 和 TDG650E15B 分别提供 30 安和 15 安的低电流性能,而去年推出的原始 650 V TDG650E60 可提供 60 A 的电流。这些 650 V GaN HEMT 是市场上可用于要求高可靠性的军事、航空电子和太空应用的最高电压 GaN 功率器件。它们非常适合电源、电机控制和半桥拓扑等应用。它们采用底部冷却配置,具有超低 FOM Island Technology® 芯片、低电感 GaNPX® 封装、>100 MHz 的超高频开关、快速且可控的下降和上升时间、反向电流能力等。Teledyne e2v HiRel 业务开发副总裁 Mont Taylor 表示:“我们很高兴继续为太空等需要最高可靠性的应用推出 650 V 系列高功率 GaN HEMT。我们相信,这些新器件的较小尺寸封装将真正使客户受益于设计最高功率密度项目。”TDG650E15B 和 TDG650E30B 都是增强型硅基 GaN 功率晶体管,可实现大电流、高击穿电压和高开关频率,同时为高功率应用提供非常低的结到外壳热阻。氮化镓器件已经彻底改变了其他行业的电源转换,现在采用耐辐射的塑料封装,经过严格的可靠性和电气测试,以确保关键任务的成功。这些新型 GaN HEMT 的发布为客户提供了关键航空航天和国防电源应用所需的效率、尺寸和功率密度优势。对于所有产品线,Teledyne e2v HiRel 都会针对最高可靠性应用进行最严格的认证和测试。对于功率器件,此测试包括硫酸测试、高海拔模拟、动态老化、高达 175°C 环境温度的阶跃应力、9 伏栅极电压和全温度测试。与碳化硅 (SiC) 器件不同,这两种器件可以轻松并联实现,以增加负载电流或降低有效 RDSon。这两种新器件现在都可以订购和立即购买。