尊敬的 FOIA 官员:这是根据《信息自由法》(5 U.S.C.)提出的记录请求。§ 552.我请求提供在 2017 年 2 月 17 日至收到此请求之日之间创建或记录的记录。具体来说,我请求提供环境保护局总部的访客日志,包括但不限于在线注册表、签到表、访客徽章、翻领别针和通行证。我希望以电子方式接收这些记录,如果可能的话,通过可搜索的 PDF 接收。请搜索适用的记录,无论格式、介质或物理特性如何。如果您确定所请求的任何材料是豁免的,请描述任何保留的记录(或其中的部分)并解释您申请豁免的依据。此外,请提供每份文件的页数、与本请求相关的总页数以及扣留文件的日期。此类声明将有助于决定是否对不利裁定提出上诉。
自组装在自然和材料科学中起着至关重要的作用。[1] 在自然界中,生物分子自组装成细胞器,细胞器进一步组织成细胞和多细胞生物体。同样,自组装也用于材料合成,将小的独立单元组织成越来越复杂的结构和材料。[2–4] 一种特别流行的分子单元是聚合物,它已用于制造纳米颗粒、纤维和水凝胶等结构。[5–9] 这些材料虽然在许多领域(特别是在生物医学应用)中都至关重要,但却具有根本的局限性:当前的方法仅报告通过弱非共价相互作用(如疏水、静电或 π-π 堆积相互作用和氢键)进行的聚合物自组装,[1] 这些相互作用都对环境条件(如溶剂极性、温度、离子强度、pH 值和共溶质)极其敏感。此外,
摘要:随着新卫星数量的急剧增加,全面的太空监视变得越来越重要。因此,高分辨率逆合成孔径雷达 (ISAR) 卫星成像可以提供对卫星的现场评估。本文表明,除了经典的线性调频啁啾信号外,伪噪声信号也可用于卫星成像。伪噪声传输信号具有非常低的互相关值的优势。例如,这使得具有多个通道的系统可以即时传输。此外,它可以显著减少与在同一频谱中运行的其他系统的信号干扰,这对于卫星成像雷达等高带宽、高功率系统尤其有用。已经引入了一种新方法来生成峰值与平均功率比 (PAPR) 与啁啾信号相似的宽带伪噪声信号。这对于发射信号功率预算受到高功率放大器严格限制的应用至关重要。本文介绍了产生的伪噪声信号的理论描述和分析,以及使用引入的伪噪声信号对真实空间目标进行成像测量的结果。
下午好 — 我是 ProPublica Illinois,这是一家位于芝加哥的州级新闻编辑室。我正在寻找 EPA 和 EPA 第 7 区与 Woolsey 运营公司(及其关联公司)相关的所有文件和记录,包括其高容量水力压裂作业和许可(伊利诺伊州自然资源部注册号:HVHHF-00003)。 Woolsey 在堪萨斯州的名称和地址如下:WOOLSEY PETROLEUM LIMITED PARTNERSHIP 1983 105 N MARKET ST STE 600, WICHITA, KS 67202-1801(代理人:BRUCE C. WARD,地址:STE 400 300 W DOUGLAS, WICHITA, KS 67202)WOOLSEY PETROLEUM CORPORATION 125 N MARKET STE 1000, WICHITA, KS 67202-1807(代理人:KAY WOOLSEY,地址:107 N MARKET / STE 600, WICHITA, KS 67202)WOOLSEY OPERATING COMPANY, LLC 125 N MARKET SUITE 1000, WICHITA, KS 67202(代理人:KAY WOOLSEY位于 125 NORTH MARKET SUITE 1000, WICHITA, KS 67202) WOOLSEY INVESTMENTS, LLC 125 N Market Suite 1000, WICHITA, KS 67202(代理人:I. WAYNE WOOLSEY,位于 125 N Market Suite 1000, WICHITA, KS 67202) WOOLSEY FIVE, LLC 125 N Market Suite 1000, WICHITA, KS 67202(代理人:KAY WOOLSEY,位于 125 N Market Suite 1000, WICHITA, KS 67202) WOOLSEY ENERGY II, LLC 125 N Market Suite 1000, WICHITA, KS 67202(代理人:I. WAYNE WOOLSEY,位于 125 N Market Suite 1000, WICHITA, KS 67202) WOOLSEY ENERGY CORPORATION 125 N MARKET STE 1000,WICHITA,KS 67202(代理人:I. WAYNE WOOLSEY,地址:125 N MARKET STE 1000,WICHITA,KS 67202) WOOLSEY COMPANIES, INC. 125 N. MARKET ST. STE 1000,WICHITA,KS 67202(代理人:J. W
我们以统一的方式介绍了用于求解连续空间平均野外游戏(MFG)和平均场控制(MFC)概率的增强学习(RL)算法的开发和分析。所提出的方法通过参数化的分数函数将Actor-Critic(AC)范式与平均场分布的表示形式配对,该函数可以以在线方式有效地更新,并使用Langevin Dynamics从结果分布中获取样品。AC代理和分数函数迭代更新以收敛到MFG平衡或给定平均场问题的MFC Optimum,具体取决于学习率的选择。对算法的直接修改使我们求解混合平均野外控制游戏(MFCGS)。使用渐近无限地平线框架中的线性二次基准评估我们的算法的性能。
基于强化学习(基于RL)的能源管理策略(EMS)被认为是具有多种电源的电动汽车的能源管理的有前途的解决方案。正在出现强化学习和深度强化学习的研究和应用。但是,以前的研究尚未系统地检查基于RL的EMS的基本要素。本文介绍了插电式混合动力汽车(PHEV)和燃料电池电动汽车(FCEV)中基于RL的EMS的性能分析。绩效分析在四个方面开发:算法,感知和决策粒度,超参数和奖励功能。结果表明,与其他算法相比,在整个驾驶周期内有效地开发了更具燃油效率的解决方案。改善感知和决策粒度会降低基于表格的策略更新的频率,但可以更好地平衡电池功率和油耗。在训练中设置高初始SOC将有效地改善基于RL的EMS的绩效。应谨慎对待基于瞬时电荷状态(SOC)变化的基于RL的EMS的等效能量损失奖励函数。这种方法对参数高度敏感,更有可能导致违反SOC约束。相比之下,基于整体SOC变化的等效能量奖励函数是更安全的选择。
抽象的心脏生长和重塑(G&R)模式在全球范围内和本地都会改变心室大小,形状和功能。生物机械,神经激素和遗传刺激通过心肌尺寸和纤维化的变化驱动这些模式。我们提出了一个新型的微观结构动机模型,该模型基于均质的约束混合理论来预测心脏中器官的G&R。以前的模型,基于运动学生长理论,通过规定生长的方向和程度,但忽略了潜在的细胞机制,从而再现了G&R在散装心肌组织中的后果。在我们的模型中,G&R的方向和程度自然来自心肌组织成分的细胞内和细胞外的转移过程及其首选的稳态伸展状态。我们还提出了一种获得机械相位平衡的参考配置的方法。我们在理想化的3D左心室几何形状上测试了我们的模型,并证明我们的模型旨在在高血压条件下维持紧张的稳态。在稳定图中,我们从具有不同的收缩压和生长因子的相同参数集中确定稳定和不稳定的G&R区域。此外,我们在第1阶段和第2期高血压后将收缩压返回到基线后的G&R逆转程度。一种现实的器官心脏G&R模型有可能识别有心力衰竭风险,实现个性化心脏疗法的患者,并促进医疗设备的最佳设计。
土壤种子库通过时间存储效应和发芽池的功能来帮助维持物种多样性,这些池可以优化不同的环境条件。这些特征促进了本地植物群落的持久性,但是非本地物种的骚乱和相关的入侵等干扰会破坏这些储量,从而从根本上改变继任轨迹。在沙漠中尤其如此,在沙漠中,本地植物群落不太适应火灾。虽然对沙漠植物社区的影响并不少见,但有关生物库的短期和长期影响的信息较少。为了更好地了解沙漠种子库的火灾和入侵物种的影响,我们调查了土壤种子库的生物多样性,从1972年至2010年之间在北美莫哈韦(Mojave)的沙漠生态区之间燃烧的30种野生鱼类生物多样性。我们评估了FIFEREMIMES的特征(频率,燃烧和燃烧严重程度)如何与气候和侵入性植物相互作用,以A - ,B-和G-多样性的量度相互作用。由于B-多样性是对社区变异性的直接度量,并且揭示了有关生物多样性损失的重要信息,因此我们进一步研究了B多样性的嵌套和离职组成部分。平均烧伤位置的A-和G多样性通常高于未燃烧的参考地点,但是单个的变量对种子库多样性的模式几乎没有影响。燃烧的区域种子库倾向于由非母体入侵物种(主要是两种草)(Bromus Rubens,Bromus tectorum)和一个入侵型福布(Cicutarium)主导。我们观察到的最引人注目的模式是在A-,B-和G多样性中的集体急剧下降,其侵入性物种优势增加,表明种子库社区的均质化,并在结束后具有侵入性物种的殖民化。均质化的证据得到了降低和燃烧区域的嵌套增加的进一步支持。我们的发现强调了诸如植物入侵之类的生物学过程如何与火灾的干扰相结合,以改变沙漠生态系统中种子库组成和多样性的模式。